• Title/Summary/Keyword: internal pressures

Search Result 229, Processing Time 0.027 seconds

Machining effect of the Autofrettaged Compound Cylinder (자긴가공된 이중실린더의 기계가공효과)

  • Park, Jae-Hyun;Lee, Young-Shin;Kim, Jae-Hoon;Kong, Jeong-Pyo;Cha, Ki-Up
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.620-625
    • /
    • 2007
  • Autofrettage process is used for internal forming and sizing of cylinder designed to withstand high internal pressures. Once the tube is autofrettaged, it needs to be machined to its final dimensions both at the bore and its outer surface. This paper presents an analytical analysis and numerical analysis of machined compound cylinder using finite element code, ANSYS10.0. An analytical model for predicting the level of autofrettage following either inner, outer, or combined machining of the compound cylinder is developed for the autofrettage residual stress field is simulated by an autofrettaged pressure. The autofrettaged pressures are obtained by using trying-error method. As autofrettage percentage is 20 %, the numerical results are found to be in almost agreement with the analytical ones. However, as autofrettage percentage is 60 %, the numerical results have a little difference with the analytical ones.

  • PDF

Design and Experiment of a Micro Electronic System for Prediction of Alveolar-Gas Partial Pressures

  • Kim, Da-Jung;Chang, Keun-Shik;Kim, Sa-Ji;Park, Hye-Yun;Suh, Gee-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • In this study we have designed and fabricated an inexpensive micro electronic system that we call Alvitek. It can indirectly but accurately predict and display the partial pressures of alveolar oxygen and carbon dioxide for the patients in the ICU of a hospital. Alvitek consists of both hardware part and software part. Performance of the system is tested by animal experiment with pigs for various $F_{t}e_{2}$ and RR(Respiratory Rate) values under the mechanical ventilation. The predicted alveolar gas partial pressures are cprpared with the approximate alveolar oxygen partial pressures easily calculated by the physician’s bedside formula. As a result, we have concluded that the relative error of A-$aDe_2$ calculated by the bedside formula grows seriously for lower $F_{t}e_{2}$ values. The present prediction method of Alvitek is henceforth believed very meaningful to the physicians. The system hardware and software are described in the text.

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.

Wake Flow Control by Acoustic Perturbation (음향섭동에 의한 후류유동의 제어)

  • 이종춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.451-459
    • /
    • 1998
  • THe influence of internal acoustic exitation through a square prism on the turbulent wake flow characteristics was investigated. The intermediate wake region where is about ten times the respective length of the body was experimentally investigated using a conditional phase average technique. At first the static base pressures of square prism and the shedding frequencies have been measured at various internal acoustic exciation frequencies. The experiment were performed under the four cases of internal acoustic excitation frequencies 0Hz 30Hz($St_e$=0.09) 65Hz($St_e$=0.20) 120Hz($St_e$=0.38) And velocity vector fields were presented and discussed. The influence of acoustic exvitation frequencies on the structure of intermediate turbulent wake region is evident. As the internal acoustic frequency increased shedding frequency gradually increased and aerodynamic force decreased. Also it was found that the vortex shedding occurs dratically well and shedding frequency reached nearly the same value as the internal acoustic frequency. but above Strouhal number 0.3 the influence disappeared.

  • PDF

Experimental Study on the Internal Flow Characteristics in a Swirl Coaxial Injector for Gas Generator (가스발생기용 스월 동축형 인젝터에서 내부 유동의 특성에 대한 실험적 연구)

  • Kim, Sung-Hyuk;Yoon, Jung-Soo;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.29-33
    • /
    • 2010
  • This study aim to investigate the internal flow characteristics by recess length of swirl coaxial injector for gas generator has propellant of Kerosene-LOx. Recess length is a very important element, have influence in spray stability and LOx post damage. The influence of recess length was analyzed by visualizing internal flow and measuring liquid film thickness and manifold pressures. Also, each spray characteristic by recess length was investigated in internal or external injector.

  • PDF

Frozen Layer Effect on Internal Cavity Pressure during Injection Molding (사출성형 공정에서 고화층이 캐비티 압력에 미치는 영향)

  • Lee H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.474-479
    • /
    • 2005
  • Experimental and theoretical studies of internal cavity pressure during injection molding of a spiral tube cavity were carried out. The frozen layer thickness and the evolution of internal cavity pressure were calculated using a commercial software (C-MOLD). The evolution of the internal cavity pressure was recorded during injection molding of polystyrene into a spiral tube mold. To explain the differences observed between the calculated and measured internal cavity pressure, a pressure correction factor (PCF) was introduced based on the plane stress theory. This factor was determined by analyzing the stress state in the melt and calculating the frozen layer thickness near the mold wall. The corrected and experimental pressures have been compared to validate the applicability of the pressure correction factor.

  • PDF

Study on the Quantitative Rod Internal Pressure Design Criterion (정량적인 핵연료봉 내압 설계기준에 관한 연구)

  • Kim, Kyu-Tae;Kim, Oh-Hwan;Han, Hee-Tak
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.363-373
    • /
    • 1991
  • The current rod internal pressure criterion permits fuel rods to operate with internal pressures in excess of system pressure only if internal overpressure does not cause the diametral gap enlargement. In this study, the generic allowable internal gas pressure not violating this criterion is estimated as a function of rod power. The results show that the generic allowable internal gas pressure decreases linearly with the increase of rod power. Application of the generic allowable internal gas pressure for the rod internal pressure design criterion will result in the simplication of the current design procedure for checking the diametral gap enlargement caused by internal overpressure because according to the current design procedure the cladding creepout rate should be compared with the fuel swelling rate at each axial node at each time step whenever internal pressure exceeds the system pressure.

  • PDF

Full-scale study of wind loads on roof tiles and felt underlay and comparisons with design data

  • Robertson, A.P.;Hoxey, R.P.;Rideout, N.M.;Freathy, P.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.495-510
    • /
    • 2007
  • Wind pressure data have been collected on the tiled roof of a full-scale test house at Silsoe in the UK. The tiled roof was of conventional UK construction with a batten-space and bitumen-felt underlay beneath the interlocking concrete tiles. Pressures were monitored on the outer surface of selected tiles, at several locations within the batten-space, and beneath the underlay. Data were collected both with and without ventilator tiles installed on the roof. Little information appears to exist on the share of wind load between tiles and underlays which creates uncertainty in the design of both components. The present study has found that for the critical design case of maximum uplifts it would be appropriate to assign 85% of the net roof load to the tiles and 15% to the underlay when an internal pressure coefficient of -0.3 is used, and to assign 60% to the tiles and 50% to the underlay when an internal pressure coefficient of +0.2 is assumed (an element of design conservatism is inherent in the apparent 110% net loading indicated by the latter pair of percentage values). These findings indicate that compared with loads implied by BS 6399-2, UK design loads for underlay are currently conservative by 25% whilst tile loads are unconservative by around 20% in ridge and general regions and by around 45% in edge regions on average over roof slopes of $15^{\circ}-60^{\circ}$.

Numerical simulation on starting transients in supersonic exhaust diffuser; evolution of internal shock structures with different initial cell pressures (초음속 디퓨져 시동 과정에 관한 수치 모사; 초기 진공도에 따른 디퓨져 내부 충격파 구조의 발달 과정)

  • Park Byung-Hoon;Lim Ji-Hwan;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.46-55
    • /
    • 2005
  • For the sea-level performance test of rocket motor designed to operate in the upper atmosphere, ejectors with no induced secondary flow are generally used, which serves dual purposes of evacuating the test cell and performing as a supersonic exhaust diffuser (SED). The main concern of this research is to simulate starting transients in order to visualize evolution of internal shock structures in SED with different initial cell (vacuum chamber) pressures. RANS code with low Reynolds $k-\varepsilon$ turbulence model was employed for these computations. Numerical results were compared with the pressure measurements previously performed [Proceedings of 2004 Annual Conference, KIMST], and showed good agreements with pressure-time history of measured data. In the case of low vacuum chamber pressure, abrupt impingement of the under-expanded supersonic jet from the nozzle onto the diffuser wall was observed, whereas initial impingement point was located downstream and moved slowly upstream in the case of non-vacuum chamber pressure. In spite of initially dissimilar evolution of shock structures, iso-mach contour revealed that the steady shock structures had little difference except the location of flow separation and normal shock.

  • PDF

Buckling of aboveground oil storage tanks under internal pressure

  • Yoshida, Shoichi
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.131-144
    • /
    • 2001
  • Overpressurization can occur due to the ignition of flammable vapors existing inside aboveground oil storage tanks. Such accidents could happen more frequently than other types of accident. In the tank design, when the internal pressure increases, the sidewall-to-roof joint is expected to fail before failure occurs in the sidewall-to-bottom joint. This design concept is the socalled "frangible roof joint" introduced in API Standard 650. The major failure mode is bifurcation buckling in this case. This paper presents the bifurcation buckling pressures in both joints under internal pressure. Elastic and elastic-plastic axisymmetric shell finite element analysis was performed involving large deformation in the prebuckling state. Results show that API Standard 650 does not evaluate the frangible roof joint design conservatively in small diameter tanks.