• 제목/요약/키워드: internal heat source

검색결과 84건 처리시간 0.025초

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

유기랭킨사이클의 성능에 미치는 내부열교환기의 영향 (Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.402-408
    • /
    • 2011
  • Organic Rankine cycles (ORC) can be used to produce power from heat at different temperature levels available as geothermal heat, as biogenic heat from biomass, as solar or as waste heat. In ORC working fluids with relatively low critical temperatures and pressures can be compressed directly to their supercritical pressures and heated before expansion so as to obtain a better thermal match with their heat sources. In this work thermal performance of ORC with and without an internal heat exchanger is comparatively investigated in the range of subcritical and transcritical cycles. R134a is considered as working fluid and special attention is paid to the effect of turbine inlet pressure on the characteristics of the system. Results show that operation with supercritical cycles can provide better performance than subcritical cycles and the internal heat exchanger can improve the thermal efficiency when the temperature of heat source becomes higher.

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.

텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델 (A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp)

  • 경종민
    • 대한전자공학회논문지
    • /
    • 제21권5호
    • /
    • pp.90-99
    • /
    • 1984
  • 양면에서 텅스텐 램프를 조사하는 실리콘 재결정시의 SOI(silicon-on-insulator) 다층구조에 대한 1차원적 온도 및 열원(열원)의 분포를 SOR(successive over-relaxation)방법을 이용하여 정상상태의 열방정식의 해로부터 구하였다. 열원의 분포는 광원의 스펙트럼, SOI sample 내부 계면에서의 다중반사, 광흡수 계수의 온도, 주파수 의존성 등을 고려하여 구하였으며, 열 방정식의 경계조건이 되는 wafer의 전면과 후면의 온도는 혹체복사 조건으로부터 구하였다. 내부계면에서는 전도열속(conduction heat flux)과 복사열속(radiation heat flux)에 의한 연속조건을 만족하도록 하였다. 본 문제에서의 온도분포와 열원의 분포는 상호간에 큰 영향을 주게 되므로, 두가지 변수가 일치되는 값을 보일 때까지 iteration을 계속하였다. Pyrometer을 이용하여 측정한 wafer 전면의 온도는 약1200°K이었고 이때의 simulation 결과는 1120°K 정도로 나타났다.

  • PDF

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권2호
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.

열원이 바뀌는 고온용 히트파이프의 천이 과정 동작에 관한 수치적 연구 (A numerical study on the transient operation of high temperature heat pipe with a switching heat source)

  • 박종흥;이재헌
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.68-78
    • /
    • 1997
  • A numerical study on the transient vapor flow and heat transfer is performed to investigate the ideal switching operation of heat source in a high temperature heat pipe. The cylindrical 2-dimensional compressible laminar vapor flow is assumed for the vapor space and the conjugate heat transfer for the heat pipe wall, wick and vapor space is calculated. The different boundary conditions such as constant heat flux, convective or radiative boundary at the outer wall are used respectively to compare the influence of boundary conditions on the transient operation. The transient temperature profile and the internal flow of the entire pipe for the switching operation are described as a result. The results show that the transient time is not significantly affected by the boundary conditions at the outer wall in present study. During the transition, two independent flows are observed temporarily on the right side and left side of the heat pipe. It is also found that the trend of temperature variation in the vapor region is different from the variation in the wick and wall region.

2중열원 히트펌프시스템의 냉방성능예측에 관한 연구 (Cooling Performance Evaluation study of Dual-Source Heat Pump System)

  • 노관종;김지영;강은철;박희문;이의준
    • 한국지열·수열에너지학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2007
  • A steady-state simulation model for Dual-Source Heat Pump(DSHP) of 8RT was presented. A Dual-Source Heat Pump(DSHP) has been designed to make up for the conventional air source heat pumps. The performance evaluation has been conducted under internal standard test conditions such as ISO-13256-1 and KS C 9306. However, as test conditions such as entering water, indoor and outdoor air conditions could not be controlled to satisfy the standard test conditions in outdoor tests, a series of experiments have been conducted with the actual test conditions. Then, computer models for DSHP could be used for the standard condition have developed using EES program. The model was developed from basic thermodynamic principles and heat transfer relations. Most of the parameters were obtained with EES from the actual catalog data. The simulation results were in good agreement with the experiments.

  • PDF

Using Natural Graphite Heat Spreaders to Increase CCFL LCD Operating Temperatures

  • Norley, Julian;Shives, Gary D.;Reis, Brad;Schober, John
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.273-276
    • /
    • 2007
  • A natural graphite heat spreader increased the upper operating temperature limit of a CCFL backlit LCD television. A 0-80W heat source was used to simulate additional electronics. Without the heat spreader, internal circuitry shut-down at ${\sim}30;$ no shut-down occurred above 80W with a heat spreader. Additionally, brightness, temperature uniformity, and operating ranges were improved, verified by environmental chamber performance testing at various ambient conditions.

  • PDF

다공성 철 분말을 이용한 열전지용 열원 적합성 연구 (Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder)

  • 김지연;윤현기;임채남;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.

나선코일의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Helical Coiled Tube)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제16권2호
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.