• Title/Summary/Keyword: internal flows

Search Result 267, Processing Time 0.025 seconds

A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model (다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구)

  • Ryu, Bong-Woo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

A Study on Imposing Exact Solutions as Internal Boundary Conditions in Simulating Shallow-water Flows over a Step (계단을 지나는 천수 흐름의 모의에서 내부 경계조건으로서 정확해의 부여에 관한 연구)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.479-492
    • /
    • 2014
  • In this study, was proposed a numerical scheme imposing exact solutions as the internal boundary conditions for the shallow-water flows over a discontinuous transverse structure such as a step. The HLLL approximate Riemann solver with the MUSCL was used for the test of the proposed scheme. Very good agreement was obtained between simulations and exact solutions for various problems of the shallow-water flows over a step. In addition, results by the numerical model showed good agreement with those of dam-break experiments over a step and stepped chute one. Developed model can simulate the shallow-water flows over discontinuous bottom such as a drop structure without additional rating curve or topography smoothing. Given the proper evaluations for the flow resistance by a step and the energy loss by the nappe flow in the future, could be simulated flooding and drying of the shallow-water flows over discontinuous topography such as a weir or the river road with retaining wall.

Water Tunnel Test to Simulate Internal Flows of a Solid Rocket Motor (고체추진 내부유동 모사를 위한 수동시험)

  • Kim, Hye-Ung;Kang, Seung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.181-184
    • /
    • 2009
  • In this study, flow visualization method to simulate internal flows of solid rocket motor in a water tunnel is introduced. The tunnel provides excellent visualization of vortex flows and has been used to propellant grain design of the solid rocket motor. A water tunnel is suggested for the research and the visualization test using dye, hydrogen bubble generator and PIV has been studied and discussed.

  • PDF

Preparation of the Internal Mammary Artery Graft in Coronary Artery Bypass Surgery - Comparison of Free Mammary Artery Flows - (관상동맥 우회로술에서 내유동맥 이식편의 처치방법에 따른 문합전 내유동맥 혈류량의 비교)

  • 최종범;김형곤;정진원
    • Journal of Chest Surgery
    • /
    • v.26 no.2
    • /
    • pp.148-153
    • /
    • 1993
  • To compare two methods of mammary pedicle graft preparations with free internal mammary artery flow, we studied 31 patients who had the left internal mammary artery harvested for coronary artery bypass grafting. The free flow was measured at the transected opening of 2 to 3 cm distal to the point of bifurcation on mean arterial pressure of 50 to 55 mmHg during cardiopulmonary bypass. Group I comprised 14 patients, whose grafts were sprayed and wrapped in sponges soaked in diluted papaverine solution (60 mg in 40 ml Hartmann's solution). An average 80 minutes after the preparations, free flow of the internal mammary artery ranged from 20 to 80 ml/min (mean 37.7 ml/min). Group II comprised 17 patients, who had internal mammary artery takedown under the exact conditions used in group I. The grafts were sprayed and wrapped in sponges soaked in the diluted papaverine solution as in group I. After an average of 28 minutes, free flow ranged from 8 to 28 ml/min (mean 17.6 ml/min). Intraluminal papaverine of the same dilution was then injected without any hydrostatic dilatation and flows increased upto 37 to 150 ml/min (mean 74.7 ml/min). This study shows that intraluminal papaverine preparation method markedly increases free mammary artery flow which is inadequate with external papaverine preparation.

  • PDF

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

Analyzing the Contribution of Regional Water Resource through the Regional Blue Water Flows of Rice Products (쌀 생산 및 소비에 따른 지역 간 청색 가상수 흐름 추정을 통한 지역 수자원의 기여도 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan;Kim, Yoon Hyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The aim of this study is to analyze the contribution of regional water resources through the gap between water used for rice production and water used for consumption. The blue water use for rice production and for consumption was quantified and the regional blue water flows were estimated using the virtual water concept from 1995 to 2010. About $1134.4Mm^3/yr$ of blue water flowed among the provinces and metropolises of Korea, and about 28.5 % of total blue water flows came from Jeonnam province. In addition, blue water usage for rice was classified into three categories: water for production, internal consumption, and overproduction in each region. In Jeonnam, $633.8Mm^3/yr$ of blue water totally used for rice production, and 50.9 % and 15.5 % were used for external and internal rice consumption, respectively. The other 33.6 % was used for over production of rice for food security. This study assumed the blue water flows depended on the gap between virtual water use for rice production and consumption. However, the analysis of regional blue water usage and flows might show the importance of other region's water resources, and make policy decision-makers aware of the integrated water management among the regions.

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.