• Title/Summary/Keyword: internal faults

Search Result 122, Processing Time 0.03 seconds

The Protective Relaying Scheme of Power Transformer Using Wavelet Based Neural Networks (웨이브렛 변환을 바탕으로 한 신경회로망을 이용한 전력용 변압기 보호 계전기법)

  • Gwon, Gi-Baek;Seo, Hui-Seok;Yun, Seok-Mu;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.134-142
    • /
    • 2002
  • This paper presents a new method for the protective relaying scheme in power transformer using wavelet based neural networks. This approach is as fellows. After approximation and detail information is extracted by daub wavelet transform from differential current of power transformer, the former is used for obtaining the rate of differential currents and restrain currents, the latter used as the input of artificial neural networks to avoid the Hiss-operation in over-exciting state and magnetizing inrush state of power transformer. The simulation of EMTP with respect to different faults, inrush conditions and over-exciting conditions in power transformer have been conducted, and the results preyed that the proposed method is able to discriminate magnetizing inrush states, over-exciting stales and internal faults.

A Current Differential Relay for Transformer Protection with a Blocking Method Using the Difference-Function of a Differential Current (차전류 차분 블로킹 변압기 보호용 전류차동 계전기)

  • 강용철;원성호;김대성;양성채
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.691-697
    • /
    • 2003
  • This paper proposes a current differential relay for transformer protection that operates in accordance with a blocking method based on the difference-function of a differential current. For magnetic inrush and over-excitation, discontinuities in the first-difference function of the differential current arise at the points of inflection, which correspond to the start and end of each saturation period of the core. These discontinuities are converted into the pulses in the second- and third-difference functions of the differential current. The magnitudes of the pulses are large enough to detect saturation of the core. A blocking signal is issued if the magnitude of the third-difference function exceeds the threshold and is maintained for three quarters of a cycle. The performance of the relay is assessed under various conditions with magnetic inrush, internal faults and external faults. The proposed blocking method can improve significantly the operating time of a relay and achieve high sensitivity of a relay.

Transformer Protective Relaying Algorithm Using A Dempster-Shafer'a Rule of Combination (Dempster-Shafer 룰 결합을 이용한 변압기 보호계전 알고리즘)

  • Kang, D.H.;Lee, S.J.;Kang, S.H.;Kim, S.T.;Kwon, T.W.;Kim, I.D.;Jang, B.T.;Lim, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1094-1096
    • /
    • 1998
  • An intelligent power transformer protective relaying algorithm based on fuzzy decision-making is proposed. To distinguish external faults with CT saturation, overexcitation and inrush conditions from internal faults, a newly designed fuzzy-rule base is used. The Dempster-Shafer's rule of combition is used for fuzzy inference. A series of the S/W and H/W tests show the proposed protection algorithm has practically sufficient sensitivity and selectivity.

  • PDF

Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer (전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘)

  • 박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

A Three-Winding Transformer Protective Relaying Algorithm Based on the Induced Voltages (유기 전압비를 이용한 3권선 변압기 보호계전 알고리즘)

  • 강용철;이병은
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.173-178
    • /
    • 2003
  • This paper proposes a three-winding transformer protective relaying algorithm based on the ratio of the induced voltages (RIV). The RIV of the two windings is the same as the turn ratio for all operating conditions except an internal fault. For a single phase and a three-phase transformer containing the wye-connected windings, the induced voltages of the windings are estimated. For a three-phase transformer containing the delta-connected windings, the induced voltage differences are estimated using the line currents, because the winding currents are practically unavailable. The algorithm can identify the faulted phase and winding if a fault occurs on one phase of a winding. The test results clearly show that the algorithm successfully discriminates internal winding faults from magnetic inrush. The algorithm not only does not require hysteresis data but also can reduce the operating time of a relay.

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

Characteristics of Short-Circuit Protector in Pad-Mounted Transformer (지상변압기의 단락보호장치 특성연구)

  • Kim, K.H.;Lee, W.Y.;Sun, C.H.;Kim, D.M.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1350-1352
    • /
    • 1995
  • This paper discribed the characteristic of I-t cross-over-point between current limited-fuse and explusion fuse(Bay-O-Net Fuse) and fuse protection in pad-mounted transformer that was generated internal faults and the short circuit of secondary side(load side). In the I-t cross-over-point, current limited fuse was melted when transient recovery voltage was raised rapidly.

  • PDF

Karst in the Korean Peninsula

  • Oh, Jong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.33-41
    • /
    • 2007
  • Alpine caves, subterranean passages, are extensively controlled by folds and faults. Caves of the regions demonstrate a significant dip of the passages due to the structural deformations. There are many vertical voids and shaft. Speleo-scapes in the internal caves are various. Calcite formations show the water table alternations which indicate the uplifting and erosional base level droppings during at least the Quaternary. Around cave entrenches there are remnants of the Fluvial terraces on the middle of the hills. These relationship between cave locations and terraces will generate a key to the Plestocene history of the south Korean peninsula. Hence, the Korean karst is turned as "the overburden alpine karst".

Computational Analysis of 3-Dimensional Viscous Flow within Centrifugal Compressors (원심압축기 내부유동의 점성 3차원 해석)

  • Park, Mu-Ryong;Choe, Beom-Seok;Yun, Ui-Su
    • 연구논문집
    • /
    • s.24
    • /
    • pp.107-117
    • /
    • 1994
  • In aerodynamic design of centrifugal compressors, impellers are designed through preliminary design and blade profile generation. In order to find out faults of the initially designed impellers, the detailed informations about internal flow phenomena such as pressure distribution, flow separation, blade loading, etc are essential. These informations can be acquired with flow measurements or computational flow analyses. In this study, we calculated 3-D viscous flow in 4 back-swept impellers which were designed in our laboratory, and analyzed the flow characteristics which influence the performance of impellers.

  • PDF

Identification of Inrush and Internal Fault in Indirect Symmetrical Phase Shift Transformer Using Wavelet Transform

  • Bhasker, Shailendra Kumar;Tripathy, Manoj;Kumar, Vishal
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1697-1708
    • /
    • 2017
  • This paper proposes an algorithm for the differential protection of an Indirect Symmetrical Phase Shift Transformer (ISPST) by considering the different behaviors of the compensated differential current under internal fault and magnetizing inrush conditions. In this algorithm, a criterion function is defined which is based on the difference of amplitude of the wavelet transformation over a specific frequency band. The function has been used for the discrimination between three phase magnetizing inrush and internal fault condition and requires less than a quarter cycle after disturbance. This method is independent of any coefficient or threshold values of wavelet transformation. The merit of this algorithm is demonstrated by the simulation of different faults in series and excitation unit and magnetizing inrush with varying switching conditions on ISPST using PSCAD/EMTDC. Due to unavailability of in-field large interconnected transformers for such a large number of destructive tests, the results are further verified by Real Time Digital Simulator (RSCAD/RTDS). The proposed algorithm has been compared with the conventional harmonic restraint based method that justifies the application of wavelet transform for differential protection of ISPST. The proposed algorithm has also been verified for different rating of ISPSTs and satisfactory results were obtained.