• Title/Summary/Keyword: internal combustion engines

Search Result 210, Processing Time 0.019 seconds

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

Development of a New Rapid Compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 정남훈;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.69-75
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature, composition of gas in the cylinder, existence of cylinder lubricant etc. Rapid compression expansion machine, the position and speed of piston of which are able to be controlled by means of a system controlled electrically, and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to copy with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled, hydraulically actuated, and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement on frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder, those are the key function for the in-cylinder combustion experiments on internal combustion engines.

  • PDF

Development of a New Rapid compression-Expansion Machine for Combustion Test of Internal Combustion Engine (내연기관의 연소실험을 위한 신형 급속 압축-팽창 장치의 개발)

  • 배종욱
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.45-51
    • /
    • 2000
  • Investigators who study on combustion in the cylinders of reciprocating piston type internal combustion engines have been encountered embarrassments due to the difficulties of adjusting specific parameter without interfacing other parameters such as cylinder wall temperature composition of gas in the cylinder existence of cylinder lubricant etc. Rapid compression-expansion machine the position and speed of piston of which are able to be controlled by means of a system controlled electrically and speed of piston of which are able to be controlled by means of a system controlled electrically and actuated hydraulically could be utilized as one of the most preferable countermeasures against those difficulties. Several units of rapid compression-expansion machines were developed but the speed up of frequency of piston movement still is the problem to be improved to cope with actual speed of internal combustion engines. Authors designed and manufactured a new rapid compression-expansion machine electrically controlled hydraulically actuated and computer programed and then examined the performance of one. Results of a set of experiments revealed acquirements of certain improvement of frequency of piston movement preserving the stability of system response and reproducing accurate compression ratio of cylinder those are the key function for the in-cylinder combustion experiments of internal combustion engines.

  • PDF

Structure and Formation of Diesel Fuel Spray

  • Fujimoto, Hajime;Dan, Tomohisa
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.8-20
    • /
    • 1996
  • Research and development studies in internal combustion engines are set on a turning point due to requirements mostly purify the polluted environments. Naturally, basic studies concerned about engines are objected to elucidate formation mechanism of harmful matters, such as nitric oxide $(NO_x)$ and particulate matters. And for diesel engines, phenomenon in combustion chambers are analyzed in several approach ways in order to obtain detail understandings in closed and hardly observing space. In this article. it is discussed that the formation mechanism of diesel fuel sprays, mostly non-evaporating free diesel sprays. From that it would be promoted some new innovations in internal combustion engines of next generation.

  • PDF

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

Transient Flow Analyses of the Intake and Compression Processes In Direct Injection Engines (직분식 디젤엔진의 흡입$\cdot$압축 행정시 엔진 실린더 내의 비정상 유동 해석)

  • Joo K. J.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63-69
    • /
    • 2001
  • The transient flow fields in direct injection engines were analyzed by using the STAR-CD CFD code during the intake/compression processes. The analyses were focused on the computation grid generation by using the IC3M code which is a pre-developed and especially well adapted for the analyses of internal combustion engines. The results showed that the used grid generation technique was well suited for the flow analyses on any internal combustion engines.

  • PDF

Development of Simulation Model for PEMFC Hybrid Excavator (연료전지 시스템을 적용한 하이브리드 굴삭기 해석 모델 개발)

  • Lee, Se Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Due to the rise in energy consumption and natural resource prices, the demand to improve energy efficiency in the construction machine has been highlighted. Even though many researchers have contributed to the development of the technology, CO2 gas emissions of heavy machinery remains high. One of the most significant problems of the novel excavator with internal combustion engines is the emission of harmful gas. To reduce emissions in the construction machine, it is necessary to replace the internal combustion engines with the alternative one. To overcome those problems, this paper focuses on the adoption of PEMFC hybrid engine for the excavator system. An internal combustion engine is replaced by new structures with fuel cell, battery and ultra capacitor. The proposed system has been designed and modeled using Simcenter Amesim software and compared with the conventional one through simulation results.

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.