• Title/Summary/Keyword: internal bonding strength

Search Result 65, Processing Time 0.017 seconds

Improvement of Particleboard Manufacturing Process and its Properties Using Powdered Tannin Adhesives (분말상 탄닌수지를 이용한 파티클보드 제조기술 및 물성개선)

  • Kang, Seog Goo;Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • This study was carried out to improve the properties of powdered tannin adhesive(PT) by adding liquid tannin resin(LT) to PT in the manufacture of particleboard. Mixing the LT to PT from 50% to 100% by weight did not show any difference in particleboard properties, but the higher the powdered tannin resin ratio, the lower the properties of the board. The proper ratio of PT to LT was 30:70 for the improvement of PT-particleboard, unless LT lower than 70%. Internal bonding strength was in proportional to the amount of LT. Mixing amino adhesives and PT did not show any improvements in mechanical and physical properties of the board but they only acted as scavenger for the free formaldehyde.Manufacturing particle board with the adhesive of 30:70 (PT:LT) and by using double blender resulted in high-performance products of E0 level of formaldehyde emission with high water resistance (U type; below 12%, M type; below 25%), as well as saving chip drying energy.

Effects of Pretreatment and Chemical Additives on Wood Cement Board Qualities from Larix leptolepis Grown in Korea (한국(韓國) 낙엽송재(落葉松材)의 목질(木質)세멘트판(板) 재질(材質)에 미치는 전처리(前處理) 및 첨가제(添加劑) 효과(效果))

  • Park, Jong Young;Lee, Hwa Hyung
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.250-259
    • /
    • 1982
  • The Larch was known unsuitable species for the wood cement board owing to its some inhibitory substances. Therefore this research was carried out to evaluate the effect of pretreatments and chemical additives on the properties of woodflake cement board from Japanese larch (Larix leptolepis) grown in Korea. In order to improve the board qualities, the woodflakes were treated by cold water or dilute NaOH solutions(0.1, 0.5, and 2.0%), and also some chemicals($CaCl_2$, $Al_2Cl_3$ and $Na_2SiO_4$) added to the wood cement mixture. The results obtained are summarized as follow; 1. The wood cement boards from the woodflake treated with 0.1% NaOH showed remarkable higher bending strengths and internal bonding strengths than those from the flake pretreated with cold water. 2. The bending strengths showed over $60kg/cm^2$, i.e. the standard strength of JIS A-5417, with pretreatments of NaOH over 0.1% and additive of $CaCl_2$ 3.0%. The maximum strengths showed at about 0.5 of every additives. 3. Addition of $CaCl_2$ and $Al_2Cl_3$, in the case of pretreated wood with NaOH above 0.1%, had effects on increasing the internal bonding strengths of sample boards. 4. The thickness swellings became decreasing along with the increasing NaOH pretreatment concentntration. 5. The equilibrium conditions of the sample boards pretreated with NaOH over 0.1% and added with $Al_2Cl_3$ and $CaCl_2$ were maintained at 9.0~10.5% moisture contents. 6. The specific gravity of the samples showed close relationships with strength properties.

  • PDF

Manufacture and Performance Evaluation of Medium-density Fiberboard Made with Coffee Bean Residue-Wood Fiber (커피박과 목섬유를 이용한 중밀도섬유판의 제조 및 성능 평가)

  • Yang, In;Lee, Kwang-Hyung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study discusses the feasibility of coffee bean residue as a raw material of medium-density fiberboard (MDF). In this relation, the effect of coffee bean residue known as an absorbent material on the physical and mechanical properties of MDF manufactured at its different addition level. Coffee bean residue which is a by-product of coffee mill and large amount of waste left over after processing for instant coffee was added at the level of 3, 6, and 9% on dry basis and urea formaldehyde resin was used as the adhesive. The MDF made with mixture of wood fiber and coffee bean residue was tested for physical and mechanical properties as well as formaldehyde emission. The bending strength and internal bonding strength of the MDF made with mixture of wood fiber-coffee bean residue were higher than that of the KS standard in randomized mat structure type, but not in layered mat structure type. Also, the physical properties of MDF made with mixture of wood fiber-coffee bean residue showed a considerable improvement in thickness swelling over the commercial MDF. More importantly, the formaldehyde emission rate of MDF made with mixture of wood fiber-coffee bean residue met the KS standard and was close to that of commercial MDF. These results showed the feasibility of coffee bean residue as a raw material for the production of environmentally-friendly MDF. Additional works on adhesive-coffee bean compatibility, improvement of moisture absorption effect and reduction the formaldehyde emission rate by carbonization of coffee bean residue may be required.

The Formaldehyde/VOCs Emission of Particleboard with Cross-linked Vinyl Resin (변성 비닐계 접착제를 이용한 파티클보드의 포름알데히드/VOCs 방산특성)

  • Kim, Ki-Wook;Lee, Se Na;Baek, Bong-San;Lee, Byong-Ho;Kim, Hyun-Joong;Choi, Younmee;Jang, Seong Wook
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • This study was used particleboard with urea-formaldehyde resin and cross linking vinyl resin. Manufactured particleboard had high cross linking vinyl resin content that internal bonding strength was low value but flexural strength was increased. For emission test of particleboard using VOC Analyzer, it was confirmed that more cross linking vinyl resin had reduced 4 volatile organic compounds (Toluene, Ethylbenzen, Xylene, Styrene) but also TVOC (Total VOC), 5 VOCs (Benzene, Toluene, Ethylbenzen, Xylene, Styrene) and formaldehyde emissions from manufactured particleboard were also lower emission factor than particleboard with only urea formaldehyde resin.

  • PDF

Study on the Physical and Mechanical Properties of Particleboard and Oriented Strandboard Manufactured by Tulliptree (Liriodendron tulipifera L.) (백합나무를 이용하여 제조한 3층 파티클보드와 배향성 스트랜드보드(OSB)의 물성에 관한 연구)

  • Seo, Jun won;Gang, Gil woo;Jo, Gun hee;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • This study was conducted to investigate a potential of Yellow poplar (Liriodendron tulipifera L.) as a raw material for the manufacturing of particleboard (PB) and oriented strandboard (OSB). PB panels were prepared at the parameters of $0.7g/cm^3$ density, 15 mm thickness, three-layer, $E_1$ grade urea-formaldehyde (UF) resin, emulsion wax, and hardener. OSB panels were manufactured with a density of $0.65g/cm^3$, thickness of 10 mm, and $E_1$ grade of UF resin. Particle size of the face layer of PB was 20~80 mesh with 7~9% moisture content (MC), while that of core-layer was 3~20 mesh with 3~5% MC, which was similar to the production condition of commercial PB. As a result, the manufactured PB panels with 15.8 mm thickness, $0.7g/cm^3$ density, and 5.8% MC satisfied the requirement of bending strength of 15 type PB of Korean Industrial Standard (KS F 3104). Both internal bonding (IB) strength and surface screw withdrawal resistance also satisfied the requirement of 18 type PB of the standard. But, the edge screw withdrawal resistance satisfied the requirement of 15 type PB of the standard. These differences in properties could be due to the slenderness ratio of raw particles. In case of OSB panels with 10.7 mm thickness, $0.68g/cm^3$ density, and 5.8% MC satisfied all the requirements of bending strength, screw withdrawal resistance, and IB strength of 18 type PB of the standard. These results suggest that Yellow poplar wood has a good potential as a raw material for the production of PB and OSB.