• Title/Summary/Keyword: internal Antennas

Search Result 28, Processing Time 0.022 seconds

Design of an Planar Inverted -F Antenna With Wide band Characteristic (광대역 특성을 갖는 역 F형 내장형 안테나의 설계)

  • Jung, Hee-Kyung;Park, Hoon;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.249-254
    • /
    • 2005
  • This paper presents the design of a novel small and wide band planar inverted F-antenna which simultaneously covers GSM900/GPS/DCS1800/DCS1900/DMB service. The proposed antenna consisting of a main patch with rectangular slit, strip 1 and strip 2, occupied the total volume of.$15\times36\times6mm^3$. A very wide impedance bandwidth characteristic was achieved by optimizing both the distance between the feed line and short strip and the length of rectangular slit on the main patch. The commercial electromagnetic software, CST Microwave Studio, is used to design the structure. The maximum gains at the frequencies of 900, 1575, 1800, 1900, and 2600 MHz were 2.07, 1.07, 1.69 and 0.55, -1.99 dBi, respectively. The overall shape of the radiation patterns is suitable for mobile communication application.

  • PDF

Hybrid MIMO Antenna Using Interconnection Tie for Eight-Band Mobile Handsets

  • Lee, Wonhee;Park, Mingil;Son, Taeho
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.185-193
    • /
    • 2015
  • In this paper, a hybrid multiple input multiple output (MIMO) antenna for eight-band mobile handsets is designed and implemented. For the MIMO antenna, two hybrid antennas are laid symmetrically and connected by an interconnection tie, thereby enabling complementary operation. The tie affects both the impedance and radiation characteristics of each antenna. Further, printed circuit board (PCB) embedded type is applied to the antenna design. To verify the results of this study, we designed eight bands-LTE class 12, 13, and 14, CDMA, GSM900, DCS1800, PCS, and WCDMA-and implemented them on a bare board the same size as the real board of a handset. The voltage standing wave ratio (VSWR) is within 3:1 over the entire design band. Antenna isolation is less than -15 dB at the lower band, and -12 dB at the WCDMA band. Envelope correlation coefficient (ECC) of 0.0002-0.05 is obtained for all bands. The average gain and efficiency are measured to range from -4.69 dBi to -2.88 dBi and 33.99% to 51.5% for antenna 1, and -4.74 dBi to -2.97 dBi and 33.45% to 50.49% for antenna 2, respectively.

Design of Aircraft Internal On-glass Antennas (항공기용 내장형 온-글래스 안테나 설계)

  • Kang, Woo-Joon;Choo, Ho-Sung;KIim, Young-Gi;Kang, Ho-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper, we propose an aircraft on-glass antenna for FM radio reception. To obtain broad matching bandwidth, we employed a multiple loop as the basic antenna structure, and the shape of the loops mimics the frame of a window in order to ensure pilots' field of view as large as possible. The detailed design parameters of the multi-loop structure were determined using a Pareto genetic algorithm with a full wave EM simulation tool. The optimized on-glass antenna was built and installed on a Korean utility helicopter (KUH) The measurement results showed a half power matching bandwidth of about 63.3 %, average vertical bore-sight gain of about -12.98 dBi in the FM band.

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

Microwave Tomography Analysis System for Breast Cancer Detection (전자파 기반 유방암 진단을 위한 토모그램 분석 시스템)

  • Kwon, Ki-Chul;Yoo, Kwan-Hee;Kim, Nam;Son, Seong-Ho;Jeon, Soon-Ik
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.19-26
    • /
    • 2009
  • The microwave exposure device for microwave breast cancer detection consists of RF transceiver and several antennas. The microwave information of object acquired from the microwave exposure device can be calculated permittivity and conductivity by using the inverse scattered analysis. In this paper, we have developed the software for detecting breast cancers based on microwave tomography, by which users not only can check out the existence of breast cancers through the permittivity and conductivity information analysis of the object's internal, but also can analysis easily information for distribution of breast cancers. The developed software provides the function for visualizing the captured permittivity and conductivity information as 2D or 3D color images on which users can easily detect the existence of breast cancers. For more detailed analysis of tomography images, the proposed software also has provided the functions for displaying their cutting profiles as well as position and size information of special area in them.

Subsurface Imaging Technology For Damage Detection of Concrete Structures Using Microwave Antenna Array (안테나배열을 이용한 콘크리트부재 내부의 비파괴시험과 영상화방법 개발)

  • Kim, Yoo-Jin;Choi, Ko-Il;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.1-8
    • /
    • 2005
  • Microwave tomographic imaging technology using a bi-focusing operator has been developed in order to detect the internal voids/objects inside concrete structures. The imaging system consists of several cylindrical or planar array antennas for transmitting and receiving signals, and a numerical focusing operator is applied to the external signals both in transmitting and in receiving fields. In this study, the authors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars or dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna way was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. Numerical simulation demonstrated that a sub-surface image can be successfully reconstructed by using the proposed tomographic imaging technology. For the experimental verification, a prototype antenna array was fabricated and tested on a concrete specimen.

A Study on Improvement of 5G In-Building Quality using Antenna Orientation Principle (안테나 지향성 원리를 이용한 5G 건물 내 품질향상에 관한 연구)

  • Lee, Byung-Chan;Lee, Sung-Hwa;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.41-48
    • /
    • 2022
  • This study is a study that designed in-building antennas with improved orientation to improve 5G quality in buildings as 5G is stabilized and more and more traffic is expected to occur in buildings. Instead of applying the forward arrangement of antenna elements, which is the Yagi antenna propagation orientation principle, the antenna design method of vertical arrangement applied to the base station antenna was proposed, and it was confirmed through experiments that antenna orientation increased. According to the experimental results, the directivity did not increase significantly within 10m of the separation distance from the antenna, but the directivity increased by about 3dB at the distance separated by more than 10m. Considering that the wireless environment in the building has various variables such as structure of internal structure, materials such as concrete and glass, closed space, and walls, it is expected that antenna with improved orientation can expand the scope of 5G quality improvement and maintain stable communication service in the building.

Imaging Inner Structure of Bukbawi at Mt. Palgong Provincial Park Using Ground Penetrating Radar (지하투과레이더를 활용한 팔공산 도립공원 북바위 내부구조 연구)

  • Kim, Hyeong-Gi;Baek, Seung-Ho;Kim, Seung-Sep;Lee, Na Young;Kwon, Jang-Soon
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • A granite rock body, called 'Bukbawi', located on a mountaineering trail at Mt. Palgong Provincial Park is popular among the public because it resembles a percussion instrument. If someone hits the specific surface area of this rock body, people can hear drum-like sound. Such phenomenon may be geologically associated with exfoliation process of the granite body or miarolitic cavity developed after gasses escaped during formation of granite. To understand better the inner structure causing drum-like sound, we carried out a non-destructive ground-penetrating radar survey. In this study, as our primary target is very close to the surface, we utilized 1 GHz antennas to produce high-resolution near-surface images. In order to construct 3-D internal images, the measurements were conducted along a pre-defined grid. The processed radargrams revealed that the locations associated with 'drum' sound coincide with strong reflections. In addition, both reflection patterns of fracture and cavity were observed. To further quantify the observed reflections, we simulated GPR scans from a synthetic fracture in a granite body, filled with different materials. The simulated results suggest that both exfoliation process and miarolitic cavity may have contributed to the 'drum' phenomena. Furthermore, the radargrams showed a well-developed cavity signature where two major reflection planes were crossed. Thus, our study is an example of non-destructive geophysical studies that can promote Earth Science in the broader community by examining geological structures attracting the public.