• Title/Summary/Keyword: intermittent irrigation model

Search Result 4, Processing Time 0.021 seconds

Analysis of Water Loss Rate and Irrigation Efficiency in Irrigation Canal at the Dong-Jin District (동진지구 관개용수로의 손실률 및 관개효율 분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Lee, Sang-Hyun;Choi, Jin-Kyu;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • The purpose of this study is to evaluate the paddy irrigation efficiency using real-time water level monitoring data and intermittent irrigation model in Gimjae, Dong-Jin irrigation district. For this study, the real-time water level data in Gimjae main canal and other secondary canals were collected from 2012 to 2014 and converted to daily discharge using rating curve in each canal. From intermittent irrigation model in paddy, irrigation water requirement was estimated and irrigation efficiency was calculated. The average amount of irrigation water supply per unit irrigation area was 1,011 mm in Gimjae main canal for 12,749 ha irrigation area, 1,011 mm in the secondary canal of upper region and 1,470 mm in the secondary canal of lower region. The median irrigation loss was 43 % in Gimjae main canal, 25 % in secondary canal of upper region and 35 % in the secondary canal of lower region. The larger irrigation area is, the irrigation loss rates tend to decrease in secondary canals. Monthly median irrigation losses in upper region were 10 (June) - 40 % (September) and those in lower region were 25 (May) to 40 % (April, June, August, and September). The results of canal management loss can be available as the basic data for irrigation water management and estimating guideline of optimal irrigation water supply to improve agricultural water use efficiencies.

Impact of Water Management Techniques on Agricultural Reservoir Water Supply (관개지구 물관리기법에 따른 농업용 저수지 공급량 평가)

  • Ryu, Jeong Hoon;Song, Jung Hun;Kang, Seok Man;Jang, Jung Seok;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.121-132
    • /
    • 2018
  • Along with climate change, it is reported that the extreme climate events such as severe drought could cause difficulties of agricultural water supply. To minimize such damages, it is necessary to secure the agricultural water resources by using or saving the amount of irrigation water efficiently. The objectives of this study were to develop paddy water management scenarios and to evaluate their effectiveness on water saving. Three water management scenarios (a) deep irrigation with ponding depth of 20~80 mm (control, CT), (b) no/intermittent irrigation until paddy cracks (water management A, WM-A), and (c) intermittent irrigation with ponding depth under 20 mm (water management B, WM-B) were developed. Water saving effects were analyzed using monitored data from experimental paddy fields, and agricultural water supply was analyzed on a reservoir-scale using MASA model. The observed irrigation amounts were reduced by 21 % and 17 % for WM-A and WM-B compared to CT, respectively, and mainly occurred by the increase of effective rainfall. The simulation results showed that water management scenarios could reduce irrigation by 21~51 % and total inflow by 10~24 % compared to CT. The long-term simulated water level change of agricultural reservoir resulted in the decrease of dead level occurrence for WM-A and WM-B. The study results showed that WT-A and WT-B have more benefit than CT in the aspect of agricultural reservoir water supply.

Evaluation of Water Supply Adequacy using Real-time Water Level Monitoring System in Paddy Irrigation Canals (실시간 관개수로 수위 모니터링을 활용한 논 관개용수 공급적정성 평가)

  • Hong, Eun Mi;Nam, Won-Ho;Choi, Jin-Yong;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Appropriate amount of water supply to paddy fields in proper time is important to achieve efficient agricultural water management. The purpose of this study is to evaluate the irrigation water supply adequacy for paddy fields using water level data in irrigation canals. For the evaluation, the real-time water level data were collected from main canals in the Dongjin irrigation district for 2 years. Using the water level data, delivered irrigation water amounts at the distribution points of each canal were calculated. The water balance model for paddy field was designed considering intermittent irrigation and the irrigation water requirement was estimated. Irrigation water supply adequacy was analyzed from main canals to the irrigation blocks based on the comparison between estimated requirement and delivered irrigation water amounts. From the adequacy analysis, irrigation water supply showed poor management condition in 2012 with low efficiency except the Daepyong canal section, and the adequacy in 2013 was good or fair except the Yongsung canal section. When irrigation water for paddy fields was insufficient, water supply adequacy was affected by irrigation area, but when irrigation water was enough to supply, adequacy was affected by distance from main canal to distribution points. These results of the spatial and temporal dimensions of the irrigation adequacy could be utilized for efficient irrigation water management to improve the temporal uniformity and equity in the water distribution for paddy fields.

MicroSUCI: A Microsurgical Background That Incorporates Suction Under Continuous Irrigation

  • Theodora Papavasiliou;Stelios Chatzimichail;Ankur Khajuria;Joon-Pio Hong
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.96-100
    • /
    • 2023
  • The microsurgical anastomosis is integral to the success of autologous-free tissue transfer. Successful performance of this procedure relies strongly on operator dexterity, which can be made more challenging when blood and edematous fluids obscure the field of view. Workflow is impeded by intermittent irrigation and suctioning, necessitating presence of an assistant, with risk of arterial thrombosis, from vessels being drawn into suction drains. To negate these current disadvantages and minimize the barrier of entry to microvascular operations, we designed, manufactured, and patented a novel three-dimensional printed microsurgical background device with microfluidic capabilities that allow continuous suction and irrigation as well as provide platforms that enable multiangle retraction to facilitate operator autonomy. This was validated in an ex vivo model, with the device found to be superior to the current standard. We believe that this will have major applicability to the improvement of microsurgeon