• Title/Summary/Keyword: intermeshing co-rotating twin screw extruder

Search Result 20, Processing Time 0.036 seconds

A Study on the Manufacturing and Mechanical Properties of the PA66/EPDM/PP Composites for Enhanced Low Temperature Fracture Resistances (저온 내충격성 향상을 위한 PA66/EPDM/PP 복합체 제조와 기계적 특성 연구)

  • Lee, Tae-Sik;Yoon, Chang-Rok;Bang, Dae-Suk;Ahn, Dae-Young;Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.164-174
    • /
    • 2009
  • PA66/EPDM/PP-g-MA and PA66/EPDM-g-MA/PP-g-MA composites were manufactured by a modular intermeshing twin screw extruder for enhanced low temperature impact resistance with different content of PP-g-MA. The results showed that composite containing 90 wt% of PA66, 8 wt% of EPDM-g-MA, and 2 wt% of PP-g-MA has a optimum value in the thermal and mechanical properties. The characteristics of the composites were analyzed by TGA, DSC, and SEM. From above results, we established that the low interfacial strength and the impact resistance at low temperature shown in a pre-existing PP/EPDM composite were enhanced by grafting with compatibilizer such as maleic anhydride. These results show the possibility of local manufacturing process and cost down with optimum screw configuration for best mixing quality in the twin screw extruder.

Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng

  • Gui, Ying;Gil, Sun-Kuk;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The effects of variable moisture content, screw speed and barrel temperature on the physicochemical properties of red ginseng powder extrudates were investigated. The raw red ginseng powders were processed in a co-rotating intermeshing twin-screw extruder. Primary extrusion variables were feed moisture content (20 and 30%), screw speed (200 and 250 rpm) and barrel temperature (115 and $130^{\circ}C$). Extruded red ginseng showed higher crude saponin contents (6.72~7.18%) than raw red ginseng (5.50%). Tested extrusion conditions did not significantly affect the crude saponin content of extrudates. Increased feed moisture content resulted in increased bulk density, specific length, water absorption index (WAI), breaking strength, elastic modulus and crude protein content and decreased water solubility index (WSI) and expansion (p<0.05). Increased barrel temperature resulted in increased total sugar content, but decreased reducing sugar content in the extrudate (p<0.05). Furthermore, increased barrel temperature resulted in increased amino acid content and specific length and decreased expansion and bulk density of extrudates only at a higher feed moisture content. The physicochemical properties of extrudates were mainly dependent on the feed moisture content and barrel temperature, whereas the screw speed showed a lesser effect. These results will be used to help define optimized process conditions for controlling and predicting qualities and characteristics of extruded red ginseng.

A Study on the Manufacturing, Mechanical Properties,Abrasion Resistance, and Slow Crack Growth Resistance of the Recycled Polyethylene/Fly Ash Composites (재생 폴리에틸렌/비산회 분말 충전 복합체 제조와 기계적 물성, 내마모성 및 저속균열성장 저항성에 관한 연구)

  • Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • The virgin and recycled polyethylene composites with various ratio of fly ash were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of fly ash from power plant and post-consumed polyethylene. Fly ash were blended with virgin HDPE and recycled polyethylene at the weight fraction of 0 to 40 wt.%. Mechanical properties such as yield strength, abrasion resistance, and slow crack resistance were measured with ISO and ASTM standards. The experimental results for the various composites showed that the elongation at break and the yield stress of the composites decreased with increasing fly ash contents. Generally, the abrasion resistance of PEs decreased with increasing sandpaper grits but the abrasion resistance of the composites increased with fly ash content at finer abrasive surface. The slow crack growth resistance of virgin HDPE, recycled JRPE and the JRPE composite showed higher slow crack growth resistance up to 50% of load at notch depth of 20% and 30%, but KRPE and the KRPE composite showed much lower resistance than virgin HDPE, JRPE and the JRPE composite. Time to break, measured with NCLS test method, of all PEs and the composites satisfies the regulation of Korean Industrial Specification for sewer pipe and support application.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

Antibacterial Activity and Mechanical Properties of Poly(Lactic-Acid) Composites Containing Zeolite-type Inorganic Bacteriocide

  • Park, Yuri;Park, Tae-Hee;Lee, Rami;Baek, Jong-sung;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.201-210
    • /
    • 2017
  • We studied the antibacterial effect and mechanical properties of PLA composites with in organic porous zeolite-type bacteriocides. The specimens were prepared by an intermeshing co-rotating twin screw extruder using different contents of inorganic bacteriocide. The degree of dispersion of the in organic bacteriocide in the PLA composite was confirmed by FE-SEM. The contents of Ag and Zn in the composite were also investigated by energy dispersive spectroscopy at different concentrations of the inorganic bacteriocide. The antibacterial effects were analyzed by turbidity analysis, shaking culture, and drop-test. The mechanical properties, such as the tensile and flexural properties, impact strength, and physical properties, were also investigated. As the content of inorganic bacteriocide increased, the antibacterial activity was increased, especially against Staphylococcus aureus. Mechanical properties, namely, tensile strength, elongation, flexural strength, and impact strength, tended to decrease with an increase in inorganic bacteriocide content, but the tensile and flexural modulus increased.

The Flame Retardant and Mechanical Properties of Wood Flour-High Density Polyethylene Composites (목분-HDPE 복합체의 난연성 및 기계적 성질)

  • Shin, Baeg-Woo;Bang, Dae-Suk;Song, Young-Ho;Chung, Kook-Sam
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.26-31
    • /
    • 2012
  • Wood-plastic composites represents a growing class of materials used by the residential construction industry and furniture industry. In this study, the effect of flame retardants on the flammability and mechanical properties of wood flour-high density polyethylene(HDPE) composites were studied. we were manufactured wood flour-HDPE composites by modular intermeshing co-rotating twin screw extruder with L/D ratio of 42. The flame retardant properties were used limiting oxygen index(LOI) and mechanical properties were measured by universal testing machine(UTM). The Morphological analysis of composites were analyzed by Scanning electron microscope(SEM). It was found that Ammonium polyphosphate can effectively reduce the flammability of the wood flour-HDPE composites. Marginal reduction in the mechanical properties of the composites was found with addition of flame retardants. SEM images showed that the coupling agent improved wood flour-HDPE interfacial bonding.

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

Effects of Ultrasonic Treatment and Particle Size on Mechanical Properties of Waste Polypropylene/WGRT Composites (초음파 처리와 분말 크기가 재생 폴리프로필렌/폐타이어 분말 복합체의 기계적 특성에 미치는 영향)

  • Kim, Donghak;Kim, Seonggil;Lee, Minji;Park, Jong-Moon;Oh, Myung-Hoon;Kim, Bong-Suk;Kim, Jinkuk;Bang, Daesuk
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.36-45
    • /
    • 2015
  • In this study, various sizes of waste ground rubber tire (WGRT) were devulcanized by a single screw extruder equipped with a sonicator in front of the die, and waste PP and devulcanized waste ground rubber tire (DWGRT) composites were prepared by an intermeshing co-rotating twin screw extruder. The crosslink density and percent devulcanization of WGRT and DWGRT for 40, 80 and 140 meshes were calculated. The mechanical properties of the composites were compared with each other. The effect of SEBS-g-MA as a compatibilizer was investigated on mechanical properties of both waste PP/WGRT and waste PP/DWGRT composites. The crosslink density was decreased with decreasing the WGRT size. On the other hand, the percent devulcanization was increased by adding the smaller size of WGRT. Also, tensile strength, impact strength and elongation at break of the composite with DWGRT were higher than those with WGRT. Especially, mechanical properties of the composites were significantly increased by adding the smaller size of WGRT and DWGRT. Addition of SEBS-g-MA into both waste PP/(D)WGRT composites exhibited better impact strength and elongation at break than the composites themselves.

Effect of Compatibilizers on the Mechanical Properties of Waste Polypropylene/Waste Ground Rubber Tire Composites (상용화제의 첨가에 따른 재생 폴리프로필렌/폐타이어 분말 복합체의 기계적 특성 분석)

  • Park, Ki-Hun;Kim, Dong-Hak;Jung, Jong-Ki;Kim, Seong-Gil;Bang, Daesuk;Oh, Myung-Hoon;Kim, Bong-Suk
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • In this study, waste polypropylene and waste ground rubber tire(WGRT) composites were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as WGRT contents, particle size, compatibilizers on the properties of waste PP/WGRT composites was extensively investigated. Tensile strength of the composites was decreased with an increase in WGRT contents, whereas elongation at break and impact strength were increased. The tensile strength, elongation at break and impact strength of the composites with the smaller size of the WGRT were more enhanced. Addition of PP-g-MA into waste PP/WGRT composites exhibited better tensile strength. However, elongation at break and impact strength were slightly decreased with increasing of PP-g-MA. On the other hand, tensile strength, impact strength and elongation at break of the composites were increased by adding the EPDM-g-MA and SEBS-g-MA. Especially, elongation at break was significantly increased compared to the composite with PP-g-MA.

Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion (반응 압출을 통한 PP-g-MA 제조 및 특성평가)

  • Kang, Dong-Jin;Lee, Sung-Hyo;Pal, Kaushik;Park, Chan-Young;Zhang, Zhen Xiu;Bang, Dae-Suk;Kim, Jin-Kuk
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2009
  • Maleic anhydride-grafted polypropylene has been widely used to improve the interfacial interaction between the components in PP/polar polymer blends and PP/filler composites and to maximize the physical properties and thermal properties. In this paper. the maleic anhydride (MAH)-grafted polypropylene (co-PP) was fabricated through reactive extrusion process with di-cumyl peroxide (DCP) as an initiator. The grafting degree of MAH depending on the contents of DCP and MAH was investigated by FT-IR spectra and chemical titration. The grafting degree increased with increasing MAH concentration and also showed maximum value at 0.06 wt% of DCP concentration. Melt flow index (MFI) of the grafted copolymer was increased with increasing the contents of MAH. The DSC and TGA analysis data indicate the melting temperature and thermal degradation of PP depending on the grafting degree of MAH.