• Title/Summary/Keyword: intermediate moisture foods

Search Result 4, Processing Time 0.019 seconds

Antimicrobial Properties of Wheat Gluten-Chitosan Composite Film in Intermediate-Moisture Food Systems

  • Park, Sang-Kyu;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.133-137
    • /
    • 2006
  • Wheat gluten-chitosan composite film (WGCCF) can prevent moisture migration and enhance the antimicrobial properties of gluten in intermediate-moisture foods like sandwiches. To mimic the structure of actual sandwich-type products we developed multi-layer food models, where moisture content and water activity differ. Water activity gradients direct moisture migration and therefore determine product characteristics and product stability. A 10% wheat gluten film-forming solution was mixed with chitosan film-forming solution (0-3%, w/w) and evaporated to generate WGCCF. Addition of 3% chitosan enhanced the mechanical properties of the film composite, lowered its water vapor permeability, and improved its ability to protect against both, Streptococcus faecalis and Escherichia coli, in a 24 hr sandwich test (reduction of 1.3 and 2.7 log cycles, respectively, compared to controls). Best barrier and antimicrobial performance was found for 3% chitosan WGCCF at pH 5.1. Film of this type may find application as barrier film for intermediate-moisture foods.

Chemical, Textural and Sensorial Attributes of Biltong Produced through Different Manufacturing Processes

  • Engez, Semih;Baskan, Pelin;Ergonul, Bulent
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.263-267
    • /
    • 2012
  • Six different types of biltong samples were manufactured from beef which was slowly frozen, quickly frozen or unfrozen. After marinating the samples according to the formulation used, meats were dried at two different temperatures ($28{\pm}1^{\circ}C$ or $42{\pm}1^{\circ}C$) until they lost half of their weights. Chemical, instrumental textural and sensorial analyses were done for determination of the most preferred sample and to compare the attributes of the samples with each other. It was found that, aw values of the samples were among 0.81 and 0.83, whereas water contents were changing among the values 39.64% and 45.37%. There were no significant differences determined among the protein contents of the biltong samples (p>0.05). Fat, ash and salt contents of the samples were among the values 1.32% and 2.07%, 5.30% and 6.06%, 2.68% and 3.30% respectively. Hardness of the samples were found between 34.81 N and 44.13 N and there was no significant difference observed among the hardness values of the biltong samples (p>0.05). As results of the analyses, it can be concluded that the highest flavor, color, tenderness and overall acceptability scores were obtained for the sample QF-LT which was made from quickly frozen beef and was dried at low temperature ($28{\pm}1^{\circ}C$) (p<0.05).

Characterization of Water Sorption for Defatted Soybean Hydrolysates (탈지대두분해물(脫脂大豆分解物)의 흡습특성)

  • Kim, Jae-Sig;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-240
    • /
    • 1986
  • Soybean hydrolysate (SHT) was prepared from defatted soybean by hydrolysing with papain and ${\alpha}-amylase$ and water sorption isotherms were determined as a function of proteolysis degree. The moisture content and B.E.T. value of SHT at a certain water activity $(A_w=0.80)$ increased lineraly with increasing degree of proteolysis. However, they changed drastically above 70% proteolysis. The water holding capacity of 78% SHT was similar to that of sorbito. The results indicate the increase of water sorption capacity is due to the release of polar groups through hydrolysis. Mizrahi equation generally gave the best fit for isotherms of SHT. Storage stability of intermediate moisture foods containing $5{\sim}10%$ SHT increased considerably, although some favorable characteristics decreased.

  • PDF

Optimization of Osmotic Dehydration Process for Manufacturing a Dried Sweet Pumpkin (건조단호박 제조를 위한 삼투건조공정의 최적화)

  • 나경민;홍주헌;차원섭;박준희;오상룡;조영제;이원영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.433-438
    • /
    • 2004
  • This study was conducted to develop a sweet pumpkin to intermediate materials for various processed foods and dried food having high quality. Factorial experiment design with three variables having three levels was adapted and response surface methodology was used to determine optimum conditions for osmotic dehydration of sweet pumpkin. The moisture content, weight reduction, moisture loss and solid gain after osmotic dehydration increased according to increasement of immersion temperature, concentration and time. The effect of concentration was more significant than that of temperature and time at given conditions. Sugar concentration and vitamin C content increased in accordance with increasement of immersion temperature, concentration and time during osmotic dehydration. Hardness was increased by increasing immersion time. The regression models showed very significant values and high correlation coefficients (R2) above 0.91, excepting hardness. The optimum condition for osmotic dehydration was 23$^{\circ}C$, 52$^{\circ}C$Brix and 80 min at the constricted conditions such as 60∼70% moisture content, above 3 mg/100 g vitamin C and more than 10 kg/$\textrm{cm}^2$ hardness.