• Title/Summary/Keyword: intermediate level flow

Search Result 37, Processing Time 0.023 seconds

Characteristics of Waterlevel Fluctuation in Riverside Alluvium of Daesan-myeon, Changwon City (창원시 대산면 강변충적층의 지하수위 변동 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoun-Su;Son, Keon-Tae;Cha, Yong-Hoon;Jang, Seong;Baek, Keon-Ha
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.457-474
    • /
    • 2003
  • This study aims to elucidate characteristics of groundwater level fluctuation at riverbank filtration sites in Daesan-myeon, Changwon City. Groundwater level fluctuation, river water level change and stream-aquifer interaction are very important to estimate optimal discharge rate of the pumping well. Water level contours from February 2003 to October 2003 show normal decreasing trend toward the Nakdong river with the hydraulic gradient of 0.008. However, flow reversion occurs when groundwater is discharged at the pumping wells or rise of the Nakdong river by rainfall. The fluctuation of the Nakdong river ranges 0 - 10 m msl. Autocorrelation analysis was conducted to the groundwater levels measured on the six monitoring wells (DS1, DS2, DS3, DS4, DS6 and DS7). The analyzed waterlevel data can be grouped into three: group 1 (DS1 and DS3) represents strong linearity and long memory effect, group 2 (DS1 and DS6) intermediate linearity and memory, and group 3 (DS4 and DS7) weak linearity and memory. Waterlevels of group 1 wells are relatively closely related to the change of river-water level. Those of group 2 wells are largely affected by the pumping and the river-water level, and those of group 3 wells are strongly linked to pumping.

Fracture Flow of Radionuclides in Unsaturated Conditions at LILW Disposal Facility (불포화 암반 파쇄대를 통한 핵종 이동)

  • Kim, Won-Seok;Kim, Jungjin;Ahn, Jinmo;Nam, Seongsik;Um, Wooyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.465-471
    • /
    • 2015
  • Adsorption experiments for radionuclides such as $^3H$, $^{90}Sr$ and $^{99}Tc$ were conducted using fractured rock collected in unsaturated zone. The released radionuclide through artificial barrier from the near surface repository can be transported by the flow of rainfall or pore water through fractures in unsaturated zone and reach to groundwater flow. Therefore, it is important to investigate transport behavior (retardation) of radionuclides through fractured rock for the safety assessment and long-term performance of repository. Fractured rock samples were collected and characterized by X-ray microtomography (XMT) analysis, which can be used to develop a more robust unsaturated fracture transport model. When fracture-filling materials are exist, distribution coefficient of $^{90}Sr$ is higher than without fracture-filling materials. In this study, batch sorption distribution coefficient ($K_d$) of radionuclide was determined and used to increase our understanding of radionuclide retardtion through fracture-filling materials.

Performance Evaluation of Sintered Metal Filter in LILW Vitrification Facility (중.저준위 방사성폐기물 유리화설비에서 금속필터 적용성평가)

  • Park, Seung-Chul;Kim, Byong-Ryol;Hwang, Tae-Won
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.146-153
    • /
    • 2006
  • A performance test of the stainless steel based sintered metal filter was conducted on the low and intermediate level radioactive waste (LILW) vitrification process. The applicability of the metal filter was based on the test results as well. The baseline pressure drop of the metal filter was evaluated similar to the ceramic filter. During the test, when the flow rate of off-gas was $110Nm^{3}/h$, the total baseline pressure drop was shown as $92mmH_{2}O$. The total pressure drop was attributed to the filter media and the residual dust layer and the value of each was $25mmH_{2}O\;and\;67mmH_{2}O$ respectively. The SEM-EDS spectrum and micrograph of the metal filter specimen showed, no corrosion and no physical damage both at the skin membrane and at the support layer. And most of the baseline pressure drop was caused by the deposition of dust on the surface of the membrane. In conclusion, even though the filter exposure time was short at the test, the performance of the stainless steel based metal filter was acceptable for the treatment of LILW vitrification process.

Mechanical Properties of B-Doped Ni3Al-Based Intermetallic Alloy

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.42-45
    • /
    • 2012
  • The mechanical behavior and microstructural evolution during high temperature tensile deformation of recrystallized Ni3Al polycrystals doped with boron were investigated as functions of initial grain size, tensile strain rate and temperature. In order to obtain more precise information on the deformation mechanism, tensile specimens were rapidly quenched immediately after deformation at a cooling rate of more than $2000Ks^{-1}$, and were then observed by transmission electron microscopy (TEM). Mechanical tests in the range of 923 K to 1012 K were carried out in a vacuum of less than $3{\times}10^{-4}$ Pa using an Instron-type machine with various but constant cross head speeds corresponding to the initial strain rates from $1.0{\times}10^{-4}$ to $3.1{\times}10^{-5}s^{-1}$. After heating to deformation temperature, the specimen was kept for more than 1.8 ks before testing. The following results were obtained: (1) Flow behavior was affected by initial strain size; with decreasing initial grain size, the level of a stress peak in the true stress-true strain curve decreased, the steady state region was enlarged and elongation increased. (2) On the basis of TEM observation of rapidly quenched specimens, it was confirmed that dynamic recrystallization certainly occurred on deformation of fine-grained ($3.3{\mu}m$) and intermediate-grained ($5.0{\mu}m$) specimens at an initial strain rate of $3.1{\times}10^{-5}s^{-1}$ and at 973 K. (3) There were some dislocation-free grains among the new recrystallized grains. The obtained results suggest that both dynamic recrystallization and grain boundary sliding are operative during high temperature deformation.

Radical Intermediate Generation and Cell Cycle Arrest by an Aqueous Extract of Thunbergia Laurifolia Linn. in Human Breast Cancer Cells

  • Jetawattana, Suwimol;Boonsirichai, Kanokporn;Charoen, Savapong;Martin, Sean M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4357-4361
    • /
    • 2015
  • Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an $IC_{50}$ value of $843{\mu}g/ml$. Treatments with extract for 24h at $250{\mu}g/ml$ or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals.

Analysis of the statistical properties for the background fractures in the LILW disposal site of Korea (중.저준위 방사성폐기물 처분 부지 내 배경 단열의 통계적 특성 분석)

  • Ji, Sung-Hoon;Park, Kyung-Woo;Kim, Kyoung-Su;Kim, Chun-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.257-263
    • /
    • 2008
  • We analyzed the statistical properties for the conductive background fractures in the Low and Intermediate Level Waste(LILW) disposal site to conceptualize of its groundwater flow system. The background fractures were classified to fracture sets based on their trends and plunges that were obtained from the borehole logging data, and then the fracture transmissivity distribution was inferred from the fixed interval hydraulic test results. The fracture size distribution of each fracture set was estimated using the fracture density and fracture mapping data. To verify the analyzed results, we compared observed field data to simulated one from the DFN model that was constructed with the analyzed statistical properties of the background fractures, and they showed a good agreement.

  • PDF

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF