• 제목/요약/키워드: interior beam-column joint

검색결과 65건 처리시간 0.024초

프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능 (Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections)

  • 최현기;최윤철;최창식
    • 한국지진공학회논문집
    • /
    • 제14권4호
    • /
    • pp.61-71
    • /
    • 2010
  • 프리캐스트 콘크리트 골조에서 실물크기의 보-기둥 접합부 실험체 5개를 대상으로 반복가력 실험을 수행하였다. 지진하중을 받는 골조를 대상으로 1개의 일체식 실험체와 4개의 프리캐스트 실험체를 포함하여 5개의 1/2스케일의 내부 보-기둥 접합부를 대상으로 하였다.주요 변수는 보의 구조적 연속성을 확보하기 위한 접합부의 형태와 접합부의 특별한 보강형태(섬유콘크리트와 횡보강근)로 하였다. 실험체는 강기둥-약보 개념에 따라 설계하였다. 보 철근은 접합부에 큰 비탄성 전단력이 작용할 경우 보에 소성힌지가 발생하도록 계획하였다. 접합부의 성능평가는 접합부의 강도, 강성, 에너지 소산능력과 층간변위비로 평가하였다. 실험결과 실험체의 파괴는 보의 소성힌지부에서 파괴되었다. 보-기둥 접합부의 성능은 대체적으로 우수한 것으로 나타났다. 접합부의 강도는 일체식 RC 구조의 비해 1.15배 정도 향상되었다. 층간변위 3.5%때의 강도에서 실험체는 ECC의 인장변형능력과 철골연결재의 항복에 의해 연성거동 하였다.

Finite element implementation of a steel-concrete bond law for nonlinear analysis of beam-column joints subjected to earthquake type loading

  • Fleury, F.;Reynouard, J.M.;Merabet, O.
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.35-52
    • /
    • 1999
  • Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

보 관통형 RCS 접합부의 전단강도 평가 (Shear Strength of Through Beam Type Beam-Column Joint composed of Reinforced Concrete Column and Steel Beam)

  • 최근도;유영찬;이리형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권4호
    • /
    • pp.62-70
    • /
    • 2007
  • 본 연구는 철근콘크리트 기둥과 철골보로 이루어진 내부 접합부의 전단강도에 관한 연구이다. 일반적으로 RCS 접합부의 공칭전단강도는 철골웨브와 콘크리트의 전단저항 합으로 산정하고 있다. 본 연구에서는 기존에 RCS 접합부의 콘크리트 전단강도 계산에 사용되었던 압축장 이론의 단점을 분석하여 보다 합리적인 압축스트러트 모델을 제안하였다. 제안된 모델의 적합성을 기존 연구자에 의해 수행된 실험결과와의 비교평가를 통하여 실시해 본 결과, 실험결과와 계산값이 잘 일치하는 것으로 나타났다.

Comparative experimental study on seismic retrofitting methods for full-scale interior reinforced concrete frame joints

  • Yang Chen;Xiaofang Song;Yingjun Gan;Chong Ren
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.385-397
    • /
    • 2023
  • This study presents an experiment and analysis to compare the seismic behavior of full-scale reinforced concrete beam-column joint strengthened by prestressed steel strips, externally bonded steel plate, and CFRP sheets. For experimental investigation, five specimens, including one joint without any retrofitting, one joint retrofitted by externally bonded steel plate, one joint retrofitted by CFRP sheets, and two joints retrofitted by prestressed steel strips, were tested under cyclic-reserve loading. The failure mode, strain response, shear deformation, hysteresis behavior, energy dissipation capacity, stiffness degradation and damage indexes of all specimens were analyzed according to experimental study. It was found that prestressed steel strips, steel plate and CFRP sheets improved shear resistance, energy dissipation capacity, stiffness degradation behavior and reduced the shear deformation of the joint core area, as well as changed the failure pattern of the specimen, which led to the failure mode changed from the combination of flexural failure of beams and shear failure of joints core to the flexural failure of beams. In addition, the beam-column joint retrofitted by steel plate exhibited a high bearing capacity, energy consumption capacity and low damage index compared with the joint strengthened by prestressed steel strip, and the prestressed steel strips reinforced joint showed a high strength, energy dissipation capacity and low shear deformation, stirrups strains and damage index compared to the CFRP reinforced joint, which indicated that the frame joints strengthened with steel plate exhibited the most excellent seismic behavior, followed by the prestressed steel strips.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Experiments on reinforced concrete beam-column joints under cyclic loads and evaluating their response by nonlinear static pushover analysis

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, Rolf;Vaze, K.K.;Ghosh, A.K.;Kushwaha, H.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.99-117
    • /
    • 2010
  • Beam-column joints are the key structural elements, which dictate the behavior of structures subjected to earthquake loading. Though large experimental work has been conducted in the past, still various issues regarding the post-yield behavior, ductility and failure modes of the joints make it a highly important research topic. This paper presents experimental results obtained for eight beam-column joints of different sizes and configuration under cyclic loads along with the analytical evaluation of their response using a simple and effective analytical procedure based on nonlinear static pushover analysis. It is shown that even the simplified analysis can predict, to a good extent, the behavior of the joints by giving the important information on both strength and ductility of the joints and can even be used for prediction of failure modes. The results for four interior and four exterior joints are presented. One confined and one unconfined joint for each configuration were tested and analyzed. The experimental and analytical results are presented in the form of load-deflection. Analytical plots are compared with envelope of experimentally obtained hysteretic loops for the joints. The behavior of various joints under cyclic loads is carefully examined and presented. It is also shown that the procedure described can be effectively utilized to analytically gather the information on behavior of joints.

통일신라건축 목조결구기법에 관한 연구 (The Study on the Jointing Method of Wooden Members at Unified Silla Architecture)

  • 황세옥;허범팔
    • 건축역사연구
    • /
    • 제18권1호
    • /
    • pp.7-29
    • /
    • 2009
  • In understranding the essence of the Korea traditional Architecture, it is important to consider the jointing methods of architectural members, architectural technologies, etc. Especially the purpose of this study is understanding on the Jointing Method of Wooden Members in the period of Unified Silla Architecture. It's conclusion is summarized as follows. 1. A section of column has very close to do with the foundation stone. The structures of foundation stone and column are generally concluded by butt joint, arrow-head joint, housed joint by Grang-e method. Judu is structured by arrow-head joint And, in general, beam is structured by Sagaematchum Chumcha and sagaljudu of Don direction. At the head of Pyungju and the body of Goju, Changbang is structed by Jangbumachum with arrow-head joint or by jumukchang-machum. Also, it is surmised that Gyisoseum and Anssolim methods had been applied to columns from former ages. The example can be found at Bagjae Mireuksaji stone pagoda. Bagjae Mireuksaji stone pagoda taking wooden-pagoda form adopts Gyisoseum and Anssolim methods. We can also find such a sort of methods from other stone constructions like Budo, etc. 2. Injahwaban is structured by short Changbumachum with arrowed-head joint at upper members, and by Anjangmachum at the lower part. This sort of Gongpo style can be seen in the mural painting of tomb of Koguryo and in Buplyungsa, Buplyunsa, Bupkisa-located in Japan, which are influenced by Bakjae or Unified Silla. It is considered that at the end of the late United Silla, Injawhaban had been replaced with Chumcha and Soro on the Pyungbang under influence of Dapo style from China.

  • PDF