• Title/Summary/Keyword: interference error p interference strain

Search Result 2, Processing Time 0.015 seconds

Design and Strain Analysis of Precision 3-component Load Cell

  • Kim, Gab-Soon;Rhee, Se-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2000
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. The equations to predict the bending strains on the surface of the beams under forces or moment are derived, the attachment location of strain gages of each sensor is determined, and 3-component load cell is carried out. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

A Study on the Strain Measurement of Structure object by Electronic Process and Laser Interferometry (전자처리 및 Laser간섭에 의한 구조물의 Strain 측정에 관한 연구)

  • Jung, W.K.;Kim, K.S.;Yang, S.P.;Jung, H.C.;Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.40-49
    • /
    • 1995
  • This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interferometry (ESPI) method, in measuring two - dimensional in-plane displacement. The anyalysis result of measurement by ESPE is quite comparable to that tof measurement by strain gauge method. This implies that the method of ESPE is a very effective tool in non-contact two-dimensional in-plane strain analysis. But there is a controversal point, measurment error. This error is discussed to be affected not by ESPE method itself, but by its analysis scheme of the interference fringe, where the first-order interpolation has been applied to the points of strain measured. In this case, it is turned out that the more errors would be occurred in the large interval of fringe. And so this paper describes a computer method for drawing when the height is available only for some arbitrary collection of points. The method is based on a distance-weighted, last- squares approximation technique with the weight varying with the distance of the data points.

  • PDF