• 제목/요약/키워드: interfacial stresses

검색결과 109건 처리시간 0.025초

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제6권3호
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Advances in materials Research
    • /
    • 제9권4호
    • /
    • pp.265-287
    • /
    • 2020
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with porous FRP plate is presented in this paper. The effect due to porosity is incorporated utilizing a new modified rule of mixture covering the porosity phases. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of the porosity has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect the porosity effect. It was found that the interfacial stresses are highly concentrated at the end of the FRP plate, the minimization of the latter can be achieved by using porous FRP plate in particular at the end. It is also shown that the interfacial stresses of the RC beam increase with volume fraction of fibers, but decrease with the thickness of the adhesive layer.

LMC로 덧씌우기 보수된 RC보의 계면응력에 관한 연구 (Theoretical Study on Interfacial Stresses at RC Beam Repair-Purpose Overlayed by Latex Modified Concrete)

  • 김현오;김성환;김동호;이봉학
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.179-184
    • /
    • 2004
  • Each year, new technological advancements for repair-purpose are being introduced to overlay the old deterioration of RC bridge deck at highway by latex-modified concrete. The days may come when this old problem will be successfully resolved. While the experimental works and researches are very active at both laboratory and field, only a few theoretical studies were performed on interfacial problems, especially on stress distribution and concentration of RC beam overlayed by latex-modified concrete. The repaired and strengthened structures would induce a premature failure due to the stress concentration at the adhesive layer of different material before the design expected failure. This paper investigated and proposed an analytical model for predicting interfacial shear and normal stresses of RC beam repair-purpose overlayed by latex-modified concrete. This would be used for predicting interfacial stresses and preventing premature failure at interfaces. This study modified Smith-Teng method for applying to cementitious repairing material, which was based on a direct governing equation and linear-elastic approach for interfacial normal and shear stresses. The proposed theoretical model was verified using commercial FEA program, LUSAS, in terms of interfacial stresses predicted by the proposed model and calculated by LUSAS.

  • PDF

Interfacial stresses in porous PFGM-RC hybrid beam

  • Benferhat Rabia;Hassaine Daouadji Tahar;Rabahi Abderezak
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.37-53
    • /
    • 2024
  • This paper presents a careful theoretical investigation into interfacial stresses in RC beams strengthened with externally bonded imperfect FGM plate. In this study, an original model is presented to predict and to determine the stresses concentration at the imperfect FGM end, with the new theory analysis approach. Stress distributions, depending on an inhomogeneity constant, were calculated and presented in forms. It is shown that both the shear and normal stresses at the interface are influenced by the material and geometry parameters of the composite beam, and it is shown that the inhomogeneities play an important role in the distribution of interfacial stresses. The theoretical predictions are compared with other existing solutions. The numerical resolution was finalized by taking into account the physical and geometric properties of materials that may play an important role in reducing the stress values. This research is helpful for the understanding on mechanical behaviour of the interface and design of the PFGM-RC hybrid structures.

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study

  • Chergui, Selma;Daouadji, Tahar Hassaine;Hamrat, Mostefa;Boulekbache, Bensaid;Bougara, Abdelkader;Abbes, Boussad;Amziane, Sofiane
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.197-217
    • /
    • 2019
  • In this study, the interfacial stresses in RC beams strengthened by externally bonded prestressed GFRP laminate are evaluated using an analytical approach, based on the equilibrium equations and boundary conditions. A comparison of the interfacial stresses obtained from the present analytical model and other existing models is undertaken. Otherwise, a parametric study is conducted to investigate the effects of geometrical and material properties on the variation of interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate. The results obtained indicate that the damage degree has little effect on the maximum shear stress, with a variation less than 5% between the damaged and undamaged RC beams. However, the results also reveal that the prestressing level has a significant effect on the interfacial stresses; hence the damaged RC beam strengthened with an initial prestressing force of 100 kN gives 110% higher maximum shear stress than the damaged RC beam strengthened with an initial prestressing force of 50 kN. The values of shear stress obtained by the analytical approach are approximately equal to 44% of those obtained from the numerical solution, while the interfacial normal stresses predicted by the numerical study are approximately 26% higher than those calculated by the analytical solution.

A stress-function variational approach toward CFRP -concrete interfacial stresses in bonded joints

  • Samadvand, Hojjat;Dehestani, Mehdi
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.43-54
    • /
    • 2020
  • This paper presents an innovative stress-function variational approach in formulating the interfacial shear and normal stresses in an externally bonded concrete joint using carbon fiber-reinforced plastic (CFRP) plies. The joint is subjected to surface traction loadings applied at both ends of the concrete substrate layer. By introducing two interfacial shear and normal stress functions on the CFRP-concrete interface, based on Euler-Bernoulli beam idea and static stress equations of equilibrium, the entire stress fields of the joint were determined. The complementary strain energy was minimized in order to solve the governing equation of the joint. This yields an ordinary differential equation from which the interfacial normal and shear stresses were proposed explicitly, satisfying all the multiple traction boundary conditions. Lamination theory for composite materials was also employed to obtain the interfacial stresses. The proposed approach was validated by the analytic models in the literature as well as through a comprehensive computational code generated by the authors. Furthermore, a numerical verification was carried out via the finite element software ABAQUS. In the end, a scaling analysis was conducted to analyze the interfacial stress field dependence of the joint upon effective issues using the devised code.

Interfacial stresses in RC beam bonded with a functionally graded material plate

  • Daouadji, Tahar Hassaine;Chedad, Abdebasset;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.693-705
    • /
    • 2016
  • Functionally graded material (FGM) plates can be bonded to the soffit of a beam as a means of retrofitting the RC beam. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. In this paper, an interfacial stress analysis is presented for simply supported concrete beam bonded with a functionally graded material FGM plate. This new solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FGM-RC hybrid structures.

Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.601-609
    • /
    • 2019
  • The effect of the porosity and its distribution shape on the normal and shear interfacial stresses of the FGM beam strengthened with FRP plate subjected to a uniformly distributed load are investigated analytically in the present paper. Basically, the governing equations of FGM beams with porosity strengthened with composite plates are identical to the ones without porosity. Nonetheless, when the effect of the porosity and its distribution shape are taken into account, the rule of mixture was reformulated to assess the material characteristics with the porosity phases and its distribution shape. This work discusses the influence of the gradient index, the porosity and its distribution shape on the interfacial stresses.

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.