• 제목/요약/키워드: interfacial peel stress

검색결과 2건 처리시간 0.016초

복합재료 Wavy-Lap Joint의 3-D 상세 응력 해석 (Refined 3-D Stress Analysis of Composite Wavy-Lap Joint)

  • 신헌;이창성;김승조;김위대
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.168-171
    • /
    • 2001
  • Due to intrinsic load eccentricity, severe peel stress concentration occurs at both ends of the single-lap joint. To avoid load eccentricity as well as the singular tensile peel stress in the joint interface, composite wavy-lap joint is proposed. In this paper, refined 3-D stress analysis of wavy-lap joint is performed by finite element method using parallel mutifrontal solver. Analysis results show that the singular tensile peel stress concentration is totally avoided in wavy-lap joint, and that loads are more evenly transferred over the length of the joint. Therefore, the strength of wavy-lap joint is significantly higher than that of conventional single-lap joint. And it is believed that even higher strengths can be obtained by optimizing the new design configuration.

  • PDF

New technique for repairing circular steel beams by FRP plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat
    • Advances in materials Research
    • /
    • 제11권3호
    • /
    • pp.171-190
    • /
    • 2022
  • In this paper, the problem of interfacial stresses in steel cantilever beams strengthened with bonded composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The original study in this paper carried out an analytical solution to estimate shear and peel-off stresses, as, interfacial stress analysis concentration under the uniformly distributed load and shear lag deformation. The theoretical prediction is compared with authors solutions from numerous researches. This phenomenon of deformation of the members, which gives probably approach on the study of interface of the reinforced structures, is called "shear lag effect". The resolution in this paper shows that the shear stress and the normal stress are significant and, are concentrated at the end of the composite plate of reinforcement, called "edge effect". A parametric study is carried out to show the effects of the variables of design and the physical properties of materials. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.