• Title/Summary/Keyword: interfacial condensation

Search Result 37, Processing Time 0.028 seconds

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

Condensation Heat Transfer Coefficient in Horizontal Stratified Cocurrent Flow of Steam and Cold Water (물-증기 동방향 성층이상 유동에서의 응축 열전달 계수)

  • 김효정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.618-624
    • /
    • 1986
  • Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationshipo. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial paramters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here rexcommened since it is based on the turbulent properties which may be closely related to the condensation phenemena.

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

The Study on the Two-Phase Flow in the Microchannel Using DSMC(Direct Simulation Monte Carlo) Method (DSMC(Direct Simulation Monte Carlo)방법을 이용한 마이크로관 내에서의 2 상유동에 관한 연구)

  • Lee, Jin-Ho;Ryu, Dong-Hun;Lee, Tae-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1667-1672
    • /
    • 2003
  • In contrast to the high demand for MEMS devices, microflow analysis is not feasible even for single-phase flow with conventional Navier-Stokes equation because of non-continuum effect when characteristic dimension is comparable with local mean free path. DSMC is one of particle based DNS(Direct Numerical Simulation) methods that uses no continuum assumption. In this paper, gas flow in microchannel is studied using DSMC. Interfacial shear and flow characteristics are observed and compared with the results of gas flow that is in contact with liquid case and solid wall case. The simulation is limited to the case of equilibrium steady state and evaporation/condensation coefficient is assumed to be the same and unity. System temperature remains constant and the interfacial shear appears to be small compared to the result with solid wall. This is because particles evaporated and reflected from the liquid surface form high density layer near the interface with liquid flow.

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Assessment of ECCMIX component in RELAP5 based on ECCS experiment

  • Song, Gongle;Zhang, Dalin;Su, G.H.;Chen, Guo;Tian, Wenxi;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • ECCMIX component was introduced in RELAP5/MOD3 for calculating the interfacial condensation. Compared to other existing components in RELAP5, user experience of ECCMIX component is restricted to developmental assessment applications. To evaluate the capability of the ECCMIX component, ECCS experiment was conducted which included single-phase and two-phase thermal mixing. The experiment was carried out with test sections containing a main pipe (70 mm inner diameter) and a branch pipe (21 mm inner diameter) under the atmospheric pressure. The steam mass flow in the main pipe ranged from 0 to 0.0347 kg/s, and the subcooled water mass flow in the branch pipe ranged from 0.0278 to 0.1389 kg/s. The comparison of the experimental data with the calculation results illuminated that although the ECCMIX component was more difficult to converge than Branch component, it was a more appropriate manner to simulate interfacial condensation under two-phase thermal mixing circumstance, while the two components had no differences under single-phase circumstance.

An Improved Heat Transfer Prediction Model for Turbulent Falling Liquid Films with or Without Interfacial Shear (계면 전단응력이 있을 때와 없을 때 하강하는 난류액막에 대한 개선된 열전달 예측 모델)

  • Park, Seok-Jeong;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-202
    • /
    • 1995
  • An improved method is presented for the prediction of heat transfer coefficients in turbulent fall-ing liquid films with or without interfacial shear for both heating or condensation. A modified Mudawwar and El-Masri's semi-empirical turbulence model, particularly to extend its use for the turbulent falling film with high interfacial shear, is used to replace the eddy viscosity model incorporated in the unified approach unposed by Yih and Liu. The liquid film thickness and asymptotic heat transfer coefficients against the film Reynolds number for wide range of interfacial shear predicted by both present and existing methods are compared with experimental data. The results show that in general, predictions of the modified model agee more closely with experimental data than that of existing models.

  • PDF

KAIST-CIWH Computer Code and a Guide Chart to Avoid Condensation-Induced Water Hammer in Horizontal Pipes

  • Chun, Moon-Hyun;Yu, Seon-Oh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.618-635
    • /
    • 2000
  • A total of 17 experimental data for the onset of slugging, which is assumed to be the precursor of the condensation-induced waterhammer (CIWH), have been obtained for various How rates of water Incorporating the most recent correlations of interfacial heat transfer and friction factor developed for a circular geometry and using an improved criterion of transition from stratified to a slug flow, two existing analytical models to predict lower and upper bounds for CIWH have been upgraded. Applicability of the present as well as existing CIWH models has been tested by comparison with two sets of CIWH data. The result of this comparison shows that the applicability of the present as well as existing models is reasonably good. Based on the present models for CIWH, a computer code entitled as“KAIST-CIWH”has been developed and sample guide charts to find CIWH free regions for a given combination of major flow parameters in a long horizontal pipe have been presented along with the results of parametric studies of major parameters (D, P, $T_{f,in}$, and L/D) on the critical inlet water flow rate($W_{f,in}_crit$ for both lower and upper bounds. In addition, two simple formulas for lower and upper bounds that can be used in an emergency for quick results have been presented.

  • PDF

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • Park, Sanghoo;Kim, Su-Jong;Shin, Eun Seob;Lee, Seung Jun;Kang, Beom Mo;Park, Kyu-Hwan;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.182-187
    • /
    • 2019
  • To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.