• Title/Summary/Keyword: interface temperature

Search Result 2,045, Processing Time 0.031 seconds

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship (35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구)

  • Kim, H.J.;Lee, J.J.;Koh, S.W.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF

A study on interface heat transfer coefficient in hot forging of Al6061 by experiments and FE analysis (Al6061 열간단조시 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.219-222
    • /
    • 2005
  • The temperature difference between die and workpiece has frequently caused various surface defects. The non-homogeneous temperature distribution of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperatures were mainly affected by the coefficient of thermal contact conductance. The precise coefficient is necessary to predict accurately the temperature changes of die and workpiece. The experiment is preformed to measure the temperature distribution of die and workpiece in closed die upsetting. And then, the coefficient is classified into function of pressure and confirmed by the comparison between experiments and FE analyses using the other model. The FE analysis to predict the temperature distribution is performed by commercial software $DEFORM-3D^{TM}$. However, it might be impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are performed with the hardness of Al6061-forged part.

  • PDF

Improvement of Negative Bias Temperature Instability by Decoupled Plasma Nitridation Process (Decoupled Plasma Nitridation 공정 적용을 통한 Negative Bias Temperature Instability 특성 개선)

  • Park, Ho-Woo;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.883-890
    • /
    • 2005
  • In this paper, the established model of NBTI (Negative Bias Temperature Instability) mechanism was reviewed. Based on this mechanism, then, the influence of nitrogen was discussed among other processes. A constant concentration of nitrogen exists inside $SiO_2$ in order to prevent boron from diffusing and to increase dielectric constant. It was shown that NBTI improvement was achieved by controlling nitrogen profile. It was supposed that the existence of low activation energy of Si-N bonds at $Si-SiO_2$ interface attributes the improvement by making hydrogen prevent interface traps. It was also shown that improvement of NBTI can be achieved by more effective control of nitrogen profile. It was supposed that the maximum control of nitrogen profile can be achieved by DPN (Decoupled Plasma Nitridation) process.

A Study on the Flow Coefficient of Compartment Fire (건물화재시 개구부의 흐름계수에 관한 연구)

  • 허만성
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 1996
  • The objective of this research is to study on the upper layer temperature, interface height and flow regime in case of several furniture fires such as trashcan, chair, carpet, sofa, mattress and wardrobe as a fire starter in a residential room by performing the experimental studies. The upper layer temperature and the Interface height were relatively well agreed with the experimental results when the flow coefficient at the opening was 0.65-0.8 for the rectangular trashcan, 0.65-0.9 for the circular trashcan and chair, and 0.7-0.9 for the carpet, sofa, mattress and wardrobe. The interface heights for the seven furniture fires were around 1[m] maintaining steady state. However, at the time of the maximum temperature, the interface height was lowered to 0.25[m]-0.75[m] from the floor. The flow regime at the opening was filling and buoyant for the distributed fire, and for the concentrated fire it was filling and then quickly changed to flow, and the flow period was long. The descending speed of the interface height was proportioned to the inflammability of the furniture and the contact surface area with air. The time required to come down around 1[m] was within 1-3 minutes.

  • PDF

Boundary Element Analysis of Singular Residual Thermal Stresses in A Fiber-Reinforced Unifirectional Viscoelastic Laminate (섬유가 보강된 단일방향 점탄성 복합재료에 발생하는 특이 잔류 열응력의 경계요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.181-187
    • /
    • 1996
  • This paper concerns the singular thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate model induced during cooling from cure temperature down to room temperature. Time-domain boundary element method is employed to investigate the nature of residual thermal stresses at the interface. Numerical results show that very large stress gradients are present at the interface corner and such stress singularity might lead to local yielding or fiber-matrix debonding.

  • PDF

Analysis of Stresses Induced in a Polymer Coating Layer due to Temperature Change (온도변화에 대한 고분자 코팅 층에 발생하는 응력 해석)

  • 박명규;이상순;서창민
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.72-76
    • /
    • 2003
  • This paper deals with the stress singularity developed in a polymer layer that is coated to a concrete surface, due to temperature change. The boundary element method is employed to investigate the behavior of interface stresses. The polymeric layer is assumed to be a linear viscoelastic material, and is thermorheologically simple. The order of the singularity is obtained, numerically, for a given viscoelastic model. Numerical results exhibit the relaxation of interface stresses, and large gradients are observed in the vicinity of the free surface. Results show that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model.

The Effects of Natural Convection on Macrosegregation during Alloy Solidification (합금 응고과정에서 자연대류가 거시편석에 미치는 영향)

  • Lee, Kyun-Ho;Mok, Jin-Ho;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.37-44
    • /
    • 2000
  • Numerical investigation is made to study the effects of natural convection on the formation of macrosegregation of a Pb-Sn alloy solidification process in a 2-D confined rectangle mold. The governing equations are calculated using previous continuum models with SIMPLE algorithm doring the solidification process. In addition. to track the solid-liquid interface with time variations. the moving boundary condition Is adopted and irregular interface shapes are treated with Boundary-Fitted Coordinate system. As the temperature reduce from the liquidus to the solidus, the liquid concentration of Sn. the lighter constituent, increases. Then the buoyancy-driven flow due to temperature and liquid composition gradients, called thermosolutal convection or double diffusion, occurs in the mushy region and forms the complicated macrosegregation maps. Related to this phnomena, effects on the macrosegregation formation depending on the cooling condition and gravity values are described.

  • PDF

Joining of AIN Ceramics to Metals: Effect of Reactions and Microstructural Developments in the Bonded Interface on the Joint Strength (질화알루미늄과 금속간 계면접합에 관한 연구: 계면반응과 미세구조 형성이 접합체 강도에 미치는 영향)

  • 박성계
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.196-204
    • /
    • 1997
  • Joining of AIN ceramics to W and Cu by active-metal brazing method was tried with use of (Ag-Cu)-Ti alloy as insert-metal. Joints were produced under various conditions of temperature, holding time and Ti-content in (Ag-Cu) alloy Reaction and microstructural development in bonded interface were investigated through observation and analysis by SEM/EDS, EPMA and XRD. Joint strengths were measured by shear test. Bonded interface consists of two layers: an insert-metal layer of eutectic Ag- and Cu-rich phases and a reaction layer of TiN. Thickness of reaction layer increases with bonding temperature, holding time and Ti-content of insert-metal. It was confirmed that the growth of reaction layer is a diffusion-controlled process. Activation energy for this process was 260 KJ/mol which is lower than that for N diffusion in TiN. Maximum shear strength of 108 MPa and 72 MPa were obtained for AIN/W and AIN/Cu joints, respectively. Relationship between processing variables, joint strength and thickness of reaction layer was also explained.

  • PDF

Design of R-type thermocouple interface with cold-junction compensator and its broken wire detection (냉점보상과 단선감지 기능을 갖는 R-형 열전쌍 인터페이스 설계)

  • Cha, Hyeong-Woo;Kim, Young-Sun;Park, So-Hyun;Hyun, Pil-Soo;Kim, Dae-Han;Yun, Young-Sik;Ryu, Ho-Young;Kim, Byung-Ju
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.847-848
    • /
    • 2006
  • R-type thermocouple(TC) interface circuits with cold-junction compensator(CJC) and its broken wires detection was developed. The circuit consists of a CJC device, a instrumentation amplifier(IA), and two resistor and a diode for broken wire detection. The experiment results show that the interface circuit has a good CJC function on the temperature range for $20^{\circ}C$ to $1400^{\circ}C$. At the range the output voltage of the IA was -14V when the TC was broken. At normal operation condition the output voltage of IA was 0V to 10V for the temperature range.

  • PDF