• 제목/요약/키워드: interface slip test

검색결과 72건 처리시간 0.021초

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

Push-out tests and bond strength of rectangular CFST columns

  • Qu, Xiushu;Chen, Zhihua;Nethercot, David A.;Gardner, Leroy;Theofanous, Marios
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.21-41
    • /
    • 2015
  • Push-out tests have been conducted on 18 rectangular concrete-filled steel tubular (CFST) columns with the aim of studying the bond behaviour between the steel tube and the concrete infill. The obtained load-slip response and the distribution of the interface bond stress along the member length and around the cross-section for various load levels, as derived from measured axial strain gradients in the steel tube, are reported. Concrete compressive strength, interface length, cross-sectional dimensions and different interface conditions were varied to assess their effect on the ultimate bond stress. The test results indicate that lubricating the steel-concrete interface always had a significant adverse effect on the interface bond strength. Among the other variables considered, concrete compressive strength and cross-section size were found to have a pronounced effect on the bond strength of non-lubricated specimens for the range of cross-section geometries considered, which is not reflected in the European structural design code for composite structures, EN 1994-1-1 (2004). Finally, based on nonlinear regression of the test data generated in the present study, supplemented by additional data obtained from the literature, an empirical equation has been proposed for predicting the average ultimate bond strength for SHS and RHS filled with normal strength concrete.

매입형 합성보의 전단합성거동에 대한 비교분석 (Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams)

  • 신현섭;허병욱;배규웅;김긍환
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.67-79
    • /
    • 2008
  • 본 연구에서는 매입형 합성보에서 전체 보의 휨거동 및 합성면에서의 상대변위(Slip) 등을 분석함으로써 화학적 부착, 부착파괴 후 기계적 맞물림 및 마찰작용, 전단 스터드가 합성보 전체의 강도 및 강성과 합성단면에서의 전단합성거동에 기여하는 정도를 해석해 보고자 한다. 이를 위해 U자형 성형강판을 이용한 합성보 및 CT형강 용접방식 강판성형 합성보에 대해 구조성능 실험과 유한요소해석을 수행하였다. 실험 및 해석결과에 의하면, 전단 스터드의 설치 유무에 따라 매입형 합성보의 극한 모멘트성능 차이는 약 10% 미만을 나타내었다. 이것은 강재 보의 단면형상으로 인한 화학적 및 기계적 부착력이 크기 때문에 이에 의한 합성작용으로도 일정 이상의 모멘트성능 발휘가 가능하여 완전합성상태에 해당하는 소성 모멘트내력과의 차이가 비교적 크지 않으며, 합성율이 증가하는 것에 비해 휨모멘트 내력은 완만하게 증가하기 때문으로 나타났다.

FRP-콘크리트 계면의 부착모델 II : 부착특성 (Bond-Slip Model for FRP-Concrete Interface II: Characteristics of Adhesive Joint)

  • 조정래;조근희;박영환;박종섭;유영준;정우태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.902-907
    • /
    • 2003
  • Substantial experimental and theoretical work exists on the bond characteristics of FRP-concrete adhesive joints. Analytic solutions based on fracture mechanics are most commonly accepted for theoretical work on joint. The solutions may be derived for the simple form of the shear strees-slip curve. And it is difficult to determine the model parameters consisting the curve. In this study, the bilinear curve with softening branch is introduced. The model parameters are determined by the method described by the companion paper with comparison of test results. There are many uncertainties in the test results of CFRP sheet adhesive joints, so that test results used for the construction of the regression problem should be reasonably selected.

  • PDF

경계면 물성치에 따른 말뚝 거동 분석 - 근거리 사진계측을 이용한 모형시험과 수치해석 비교 (Investigation of Pile Behaviour according to Interface Properties - Comparison between Pile Model Test Using Close Range Photogrammetry and Numerical Analysis)

  • 이정민;이용주
    • 한국지반공학회논문집
    • /
    • 제30권9호
    • /
    • pp.29-39
    • /
    • 2014
  • 본 연구는 지반과 말뚝 사이의 경계면 물성치에 따른 말뚝의 거동을 파악하기 위하여, 말뚝 모형시험 결과와 유한요소해석 결과를 이용하여 비교 분석하였다. 모형시험은 말뚝이 침하함에 따른 주변 지반의 거동을 파악하기 위하여 근거리 사진계측 기법을 적용하였으며, 강재와 콘크리트로 제작 된 각각의 말뚝으로 시험을 수행하였다. 수치해석은 모형시험을 근거로 모델링 하였으며, 지반과 말뚝 사이의 미끄러짐을 모사하기 위하여 경계면 요소를 이용하였다. 또한 경계면 강도감소계수 $R_{inter}$를 이용하여 경계면 요소의 물성치를 나타내었으며, 이 값을 바꿔가며 모형시험 결과와 비교하였다. 본 연구를 통해 근거리 사진계측 기법과 수치해석 결과가 어느 정도 잘 일치하는 것을 확인 할 수 있었다. 또한, 말뚝의 재료에 따른 경계면 강도감소계수 $R_{inter}$ 값이 말뚝 거동에 영향을 주는 것을 확인하였다.

Dynamic analysis and model test on steel-concrete composite beams under moving loads

  • Hou, Zhongming;Xia, He;Wang, Yuanqing;Zhang, Yanling;Zhang, Tianshen
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.565-582
    • /
    • 2015
  • This paper is concerned with the dynamic analysis of simply-supported steel-concrete composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, the governing motion equations are derived from the direct balanced method. By variable separation approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, and compared with the experimental results. The analysis results show that the governing motion equations become more complicated when interface slip is taken into account, and the dynamic behaviors are significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, the global stiffness should not be reduced as the same factor to all orders, but as different ones according to the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design and experiment, or else great deviation is inevitable.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

철근 콘크리트 부재의 부착특성에 관한 실험 연구 (An Experimental Study on the Bond Characteristics of Reinforced Concrete Structures)

  • 오병환;강영진;이성로;방기성
    • 콘크리트학회지
    • /
    • 제2권4호
    • /
    • pp.99-107
    • /
    • 1990
  • 철근 콘크리트구조물에서 철근과 콘크리트사이의 부착에 의한 힘의 전달문제는 철근콘크리트의 역학적 거동에 매우 중요한 사항이 된다. 본 연구에서는 이러한 부착거동을 규명하기 위하여 포괄적인 실험연구를 수행하였으며, 대칭형태의 인정시험시편을 제작하여 부착실험을 수행하였으며, 대칭형태의 인장시험시편을 제작하여 부착실험을 수행하였다. 본 연구에서 사용된 시편은 콘크리트 휨부재의 단면중립축아래에서 균열과 균열사이의 인장응력상태를 모형화한 것으로, 본 실험결과 국부 부착응력과 부착슬립의 관계는 균열면에서의 거리에 따라 아주 다른 것으로 나타났다. 본 연구에서는 또한 반복하중하에서의 부착거동에 대한 실험연구도 수행하였으며 하중의 반복에 따라 철근변형도와 부착슬립이 증가하는 현장을 규명하였다.

쉬트형 FRP와 콘크리트의 부착특성에 관한 실험적 연구 (Experimental Study on the Bond Charateristics for FRP Sheet-Concrete Interface)

  • 고훈범;고만영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.361-364
    • /
    • 2006
  • In this study, six specimens were prepared for two type FRP sheets(carbon and polyacetal) to evaluate the behavior of FRP-concrete interfacial bond. A direct tensile test was conducted and the test results show that fiber type influences both bond strength and the shape of strain distribution. The failure mode for carbon type specimens seems to bond failure between concrete and FRP, but for polyacetal type indicates interface failure between FRP and expoxy. The local bond stress-slip relations were obtained from test results, and it was shown good shape for the polyacetal type. But for the carbon type it was scattered.

  • PDF