• Title/Summary/Keyword: interface horizontal shear

검색결과 41건 처리시간 0.023초

Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.187-200
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been conducted to investigate the behaviour of pre-existing single piles in response to adjacent tunnelling by considering the tunnel face pressures and the relative locations of the pile tips with respect to the tunnel. Via numerical modelling, the effect of the face pressures on the pile behaviour has been analysed. In addition, the analyses have concentrated on the ground settlements, the pile head settlements and the shear stress transfer mechanism at the pile-soil interface. The settlements of the pile directly above the tunnel crown (with a vertical distance between the pile tip and the tunnel crown of 0.25D, where D is the tunnel diameter) with a face pressure of 50% of the in situ horizontal soil stress at the tunnel springline decreased by approximately 38% compared to the corresponding pile settlements with the minimum face pressure, namely, 25% of the in situ horizontal soil stress at the tunnel springline. Furthermore, the smaller the face pressure is, the larger the tunnelling-induced ground movements, the axial pile forces and the interface shear stresses. The ground settlements and the pile settlements were heavily affected by the face pressures and the positions of the pile tip with respect to the tunnel. When the piles were inside the tunnel influence zone, tensile forces were induced on piles, while compressive pile forces were expected to develop for piles that are outside the influence zone and on the boundary. In addition, the computed results have been compared with relevant previous studies that were reported in the literature. The behaviour of the piles that is triggered by adjacent tunnelling has been extensively examined and analysed by considering the several key features in substantial detail.

직봉의 기능을 포함한 합성보의 전단연결재 개발과 성능평가 (Development and Performance Evaluation of the Shear Connector of Composite Beam with Vertical Bars)

  • 김상섭;박동수;부윤섭
    • 한국강구조학회 논문집
    • /
    • 제23권6호
    • /
    • pp.725-736
    • /
    • 2011
  • 합성보에는 강재보와 철근콘크리트 슬래브의 경계면에서 작용하는 수평전단력에 저항하기 위해 전단연결재를 설치한다. 또한 일반적으로 강재보에는 거푸집용 철선일체형 데크플레이트가 주로 사용되는데 시공 중 데크플레이트의 탈락 및 낙하 등 안전을 확보하기 위해 철근트러스 거더가 끝나는 양단부의 상부철선에 직봉을 설치한다. 따라서, 본 연구는 이형철근과 강판을 이용하여 동등 이상의 내력을 확보하면서 직봉의 기능을 포함하는 새로운 형상의 전단연결재를 개발하고 활용하는 방안을 검토하였다. Push-out 실험결과, 이형철근과 강판을 사용한 전단연결재는 ${\phi}16$ 스터드커넥터 이상의 내력과 연성을 확보하였으며, 직봉과 전단연결재를 겸용하는 것이 가능한 것으로 나타났다.

수직응력의 감소가 부마찰이 작용하는 말뚝의 거동에 미치는 영향 (The Influence of Reduction of Vertical Stress on the Behaviour of Piles Subjected to Negative Skin Friction)

  • 이철주
    • 대한토목학회논문집
    • /
    • 제29권1C호
    • /
    • pp.33-39
    • /
    • 2009
  • 부마찰이 작용하는 말뚝 주변지반의 수직 응력은 전단응력 전이 과정을 통해 감소하게 된다. 본 연구에서는 3차원 유한차분 해석을 실시하여 부마찰이 작용하는 단독말뚝 인근 지반의 수직응력 및 수평응력의 감소 및 그로 인한 말뚝의 거동변화에 대한 분석을 실시하였다. 또한 말뚝인근 지반의 수직응력 감소를 고려할 수 있는 간단한 식을 제안하였다. 말뚝에 부마찰이 작용하는 경우 Greenfield 조건에 비해 지반의 수직 및 수평응력이 상당히 크게 감소하는 것으로 나타났다. 수직응력이 감소되는 수평범위는 그리 넓지 않아서 최대 4-8 D 정도 인 것으로 분석되었다, 여기서 D는 말뚝의 직경이다. 본 연구를 통해 분석된 바에 의하면 부마찰력의 평가에 일반적으로 널리 이용되는 $\beta$-방법에 의해서는 부마찰력이 과다하게 평가될수 있는 것으로 나타났으며, 따라서 원래의 공식에 수직응력의 감소를 반영할 필요가 있는 것으로 판단된다.

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

교량에서 2층 분리타설한 철근콘크리트 슬래브의 구조거동에 관한 실험연구 (An Experimental Study on the Structural Bechavior of Two-layered Reinforced Concrete Slabs in Bridges)

  • 오병환;이형준;이명규;한승환
    • 콘크리트학회지
    • /
    • 제6권3호
    • /
    • pp.162-172
    • /
    • 1994
  • 본 연구에서는 2번에 분리타설된 교량 슬래브의 휨 및 전단거동 특성에 대한 실험연구를 수행하였다. 분리타설된 슬래브의 거동은 구콘크리트의 표면상태, 다우웰 철근량 및 접착층의 부착강도에 의해 큰 영향을 받게 되므로, 본 연구에서는 이와 같은 변수를 변화시켜 실험을 수행하였다. 본 연구결과 초기균열이 발생할때까지는 콘크리트의 표면상태 및 다우웰 철근량에 따라 구조거동에 큰 차이를 보이지 않으나, 극한하중상태에 도달하면 구콘크리트의 표면상태가 양호하고 아크릴수지 처리와 다우웰 철근이 많을수록 분리타설된 슬래브는 일체로 거동하는 것으로 나타났다. 따라서, 본 연구결과는 앞으로 교량에서 2층으로 분리타설하는 철근콘크리트 슬래브의 설계를 위한 유용한 자료와 토대를 제시하고 있다.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

연성효과에 의한 대형 구조물의 굽힘-비틀림 진동특성 (Bending-Torsional Vibration Characteristics of Large Structure Influenced by Coupling Effects)

  • 송창용;손충열;송재영
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.431-438
    • /
    • 1996
  • The channel type structure which has large openings is frail with respect to torsional strength, and the horizontal-torsional motion is highly coupled, because of the large difference between the centroil and the shear center. Also, a discontinuous boundary phase is came from tansition section between the opened section and the closed section. To analyze the Bending- Torsional coupled mode parameters for the channel type structure, the Transfer Matrix Method was used. Comparing the result of F.D.M.T.M.M yields good results in relatively low frequency region.

  • PDF

전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가 (Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement)

  • 김상윤;김선훈;이득행;한선진;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.71-77
    • /
    • 2023
  • 이 연구에서는 높이가 400 mm인 중공슬래브(Hollow-Core Slab, 이하 HCS)의 구조성능을 평가하기 위한 실대형 실험을 수행하였으며, 기존의 압출성형방식이 아닌 단일몰드방식을 적용하여 총 4개의 HCS를 제작하였다. 실험의 주요 변수는 토핑콘크리트의 유무, 전단보강근의 배치 유무 및 위치로 설정하였으며, 실험체들의 균열패턴 및 하중-변위 응답을 상세히 분석하였다. 실험결과 전단철근이 배치된 HCS 실험체들은 휨강도를 달성하였고, 이후에 최종적인 파괴는 사인장균열에 의하여 지배되었으며, HCS 유닛 웨브 내에 전단철근이 배치되지 않은 실험체들의 경우 설계기준을 통해 산정된 공칭휨강도를 발현하지 못하였다. 전단철근을 HCS 유닛에 배근 할 경우에는 전단강도가 약 8~23% 증가하는 것으로 나타났으며, HCS의 중공을 철근콘크리트로 보강하는 방법보다 전단성능 향상에 더 효과적인 것으로 나타났다.