• Title/Summary/Keyword: interface heat transfer

Search Result 235, Processing Time 0.024 seconds

Analysis of Convective Boiling Heat Transfer for Refrigerant Mixtures in Annular Horizontal Flow (혼합냉매의 환상 유동 증발열전달 해석)

  • Sin, Ji-Yeong;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.720-729
    • /
    • 1996
  • An analysis of convective boiling heat transfer for refrigerant mixtures is performed for an annular flow to investigate the degradation of the heat transfer rate. Annular flow is selected in this study because a great portion of the evaporator in the refrigeration and air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor is included in this analysis, which is considered to be one of driving forces for the mass transfer at the interface. Due to the concentration gradient at the interface the mass transfer is interfered, so is the evaporative heat transfer at the interface. The mass transfer resistance makes the interface temperature slightly higher and, as a result, the heat transfer coefficients decrease compared with those without mass transfer effects. The degradatioin of the heat transfer rate reaches its maximum at a certain composition. The composition difference between vapor core and vapor at the interface has a direct effect on the temperature difference between the vapor core and the interface and the degradation of the heat transfer rate. Correction factor $C_{F}$ for the mixture effects is added to the correlation for pure substances and the flow boiling heat transfer coefficients can be calculated using the modified equation.n.

Numerical Analysis for Stefan Problem in Mold-Casting with Air-Gap Resistance (주형/주물 접촉면에서의 접촉열저항을 고려한 상변화문제에 관한 연구)

  • 여문수;손병진;이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.348-355
    • /
    • 1992
  • Casting structures and properties are determined by the solidification speed in the metal mold. The heat transfer characteristics of the interface between the mold and the casting is one of the major factors that control the solidification speed. According to Sully's research, the thermal resistance exists due to the air-gap formation at the mold-casting interface during the freezing process and the interface heat transfer coefficient is used to describe the degree of it. In this study, one-dimensional Stefan problem with air-gap resistance in the cylindrical geometry is considered and heat transfer characteristics is numerically examined. The temperature distribution and solidification speed are obtained by using the modified variable time step method. And the effects of the major parameters such as mold geometry, thermal conductivity, heat transfer coefficient and initial temperature of casting on the thermal characteristics are investigated.

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

Solid-Fluid Interface Treatment in Conjugate Heat Transfer Analysis using Unstructured Grid System (비정렬격자계를 사용하는 복합열전달 해석에서의 고-액 계면 처리방법)

  • Myong Hyon-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • Conjugate heat transfer (CHT) is the simultaneous, coupled heat transfer within a fluid and an adjoining solid, and the interface treatment plays an important role in its analysis, particularly when using unstructured grid system. In the present paper a new solid-fluid interface treatment in CHT analysis is presented and applied to two typical CHT problems, i.e. natural convections in both concentric thick-walled cylinders and cavity with a centered solid body. The present interface treatment for unstructured mesh clearly demonstrates the same accuracy and robustness as that for typical structured mesh.

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

Determination of the interface heat transfer coefficient for hot-forming process of Ti-6Al-4V (Ti-6Al-4V 합금의 열간성형공정에 대한 계면열전달계수의 결정)

  • 염종택;임정숙;나영상;박노광;신태진;황상무;심인옥
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.299-302
    • /
    • 2003
  • The interface heat transfer coefficient was measured for non-isothermal bulk forming of Ti-6Al-4V. FE analysis and experiments were conducted. Equipment consisting of AISI H13 die was instrumented with thermocouples located at sub-surface of the bottom die. Die temperature changes were investigated in related to the process variables such as reduction, lubricant and initial die temperature. The calibration approach based on heat conduction and FE analysis using an inverse algorithm were used to evaluate the interface heat transfer between graphite-lubricated die and glass-coated workpiece. The coefficients determined determined were affected mainly by the contact pressure. The validation of the coefficients was made by the comparison between experimental data and FE analysis results.

  • PDF

Determination and Analysis of Interface Heat Transfer Coefficients in Hot Forming of Ti-6Al-4V (Ti-6Al-4V 합금의 열간성형에 대한 계면열전달계수의 결정 및 분석)

  • 염종택;임정숙;박노광;신태진;황상무;홍성석
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.370-375
    • /
    • 2003
  • Determination of the interface heat transfer coefficient was investigated in non-isothermal bulk forming of glass-coated Ti-6Al-4V. FE analysis and experiments were conducted. Equipment consisting of AISI Hl3 die was instrumented with thermocouples located at sub-surface of the bottom die. Die temperature changes were investigated in related to the process variables such as reduction, lubricant and initial die temperature. The calibration approach based on heat conduction and FE analysis using an inverse algorithm were used to evaluate the interface heat transfer between graphite-lubricated die and glass-coated workpiece. The coefficients determined were affected mainly by the contact pressure. The validation of the coefficients was made by the comparison between experimental data and FE analysis results.

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF

Computer Analysis of Heat Transfer in Squeeze Casting (용탕단조에 있어서의 열전달 해석)

  • Yoo, Seung-Mok;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.495-502
    • /
    • 1990
  • A basic heat flow model has been developed to estimate the heat transfer coefficient at the casting/mold interface during squeeze casting. Based on the measured temperature profiles in squeeze casting of Al-4.5%Si alloy, heat transfer coefficients which vary with time were calculated by numerical method. The influences of the load and the amount of fraction solid on the heat transfer coefficient have also been studied. Using the calculated heat transfer coefficient two dimensional solidification analysis in the squeeze casting process was carried out by the finite difference method, and the results were in good agreement with the experiments. It may be concluded that heat flow analysis in the squeeze casting process with accurate heat transfer coefficient at the casting /mold interface is important for a proper design of cooling in die and finally for improving productivity and die life as well.

  • PDF

Effects of natural convection on the melt/solid interface shape in the HEM process (열교환법 공정에서 고/액 계면의 형태에 미치는 자연대류의 영향)

  • 왕종회;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.41-46
    • /
    • 1997
  • The change of flow field and the effects of convective heat transfer on the shape and location of melt/crystal interface has been studied during the crystal growth by the heat exchanger method. Although the thermal structure is stable in the crucible, the flow due to the natural convection driven by radial temperature gradient is significant, because the thermal stability is broken by the hemispherical melt/crystal interface shape. The maximum interface deflection with convection is smaller than without and the convective heat transfer should be considered to simulate the heat transfer process of heat exchanger method rigorously.

  • PDF