• 제목/요약/키워드: interface crack

검색결과 518건 처리시간 0.033초

이종 접합체의 원공에서 파생하는 균열에 대한 혼합모드 파괴기준의 설정 (Establishment of Fracture Criteria for Mixed Mode in Bonded Dissimilar Materials with an Crack Emanating from an Edge Semicircular Hole)

  • 정남용;송춘호
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.907-915
    • /
    • 2001
  • Application of bonded dissimilar materials in many industries are increasing. When these materials are to be used in structures, it needs to evaluate the failure strength applying fracture mechanics. Al/Epoxy bonded dissimilar materials with an interface crack and an interface crack emanating from an edge semicircular hole were prepared, experiment of fracture toughness were carried out. Stress intensity factors of interface cracks in bonded dissimilar materials were computed with boundary element method(BEM) and the fracture criteria of mixed mode crack were analyzed. From the results, the fracture criteria and the method of strength evaluation by the fracture toughness in Al/Epoxy bonded dissimilar materials were proposed.

Variations of the stress intensity factors for a planar crack parallel to a bimaterial interface

  • Xu, Chunhui;Qin, Taiyan;Yuan, Li;Noda, Nao-Aki
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.317-330
    • /
    • 2008
  • Stress intensity factors for a planar crack parallel to a bimaterial interface are considered. The formulation leads to a system of hypersingular integral equations whose unknowns are three modes of crack opening displacements. In the numerical analysis, the unknown displacement discontinuities are approximated by the products of the fundamental density functions and polynomials. The numerical results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. The mixed mode stress intensity factors are indicated in tables and figures with varying the shape of crack, distance from the interface, and elastic constants. It is found that the maximum stress intensity factors normalized by root area are always insensitive to the crack aspect ratio. They are given in a form of formula useful for engineering applications.

Al/Epoxy 이종재 접합 계면의 초음파 감쇠계수에 의한 균열길이의 측정 (Measurement of Crack Length by Ultrasonic Attenuation Coefficients on Interfaces of Al/Epoxy Bonded Dissimilar Materials)

  • 박성일;정남용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1109-1114
    • /
    • 2003
  • The initial crack often occurs on the bonded interface and it is the general cause of the interface fracture. It is very significant to establish the measurement method of interfacial crack by applying the ultrasonic technology into the interface of bonded dissimilar materials. In this paper, the interfacial crack length was measured by ultrasonic attenuation coefficient in the Al/Epoxy bonded dissimilar materials of double-cantilever beam(DCB). The energy release rate, G, was obtained by the experimental and Ripling's equation measurement of compliance. The experimental results represent that the relation between interfacial crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the experimental results, a measurement method of the interfacial crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

고온용 압력용기의 크리프 균열성장 잔여수명평가 사례 연구 (A Case Study of Creep Crack Growth Remaining life Assessment for High Temperature Pressure Equipments)

  • 백운봉;이해무;박종서;윤기봉
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.26-30
    • /
    • 2001
  • Creep crack growth lift of high temperature pressure equipments was assessed for various crack locations and for various material properties. Surface cracks at the inner and outer surface of the vessel in the axial and circumferential directions were considered. The crack was located in the weld metal, in the parent metal or at the weld interface. Results shored that the crack at the weld interface was the most dangerous one. The crack located outside is weaker than that located inside. Safety factors of the case in which improper material properties were used the to unavailability of the correct material properties were discussed.

  • PDF

콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의 (Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation)

  • 이광명
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.235-243
    • /
    • 1996
  • 콘크리트의 역학적거동은 다양한 종류의 균열의 발생과 전파에 의하여 영향을 받는다. 최근 고성능 콘크리트의 개발이 이루어지면서 계면파괴와 계면역에서의 균열양상에 대한 연구가 중요한 분야로 부각되고 있다. 탄성이며 균질한 재료에 적용되는 균열전파에 대한 규준은 계면역에서 균열이 진전하는 경우는 유효하지 않으며 이 경우에는 콘크리트에서 균열전파를 예측하기 위하여 구성재료들의 파괴인성과 그들 사이 계면의 파괴인성의상대적인 크기를 고려하여야 한다. 본 논문에서는 계면균열선단에서 계면파괴역학변수인 에너지해방률과 하중위상각을 수치해석방법을 이용하여 구하는 방법과 계면에서의 균열전파의 예측을 위한 에너지해방률에 기초를 둔 파괴규준을 제안하였다. 계면역에서의 균열양상을 조사하기 위하여 계면균열을 가진 이상복합모델에 대한 실험과 수치해석연구를 수행하였으며 대체적으로 실험결과와 규준을 이용하여 예측한 결과가 서로 일치하는 결과를 얻었다.

CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성 (Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature)

  • 조영재;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

접착층내 결함이 계면균열의 응력확대계수에 미치는 영향 평가 (Effect Evaluation of Hole Defects in Adhesive on SIF of Interface Crack)

  • 현철승;허성필;양원호;류명해
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.299-303
    • /
    • 2001
  • Adherend-adhesive interface failure will occur on a macroscale when surface preparation or material quality are poor. It is well known that the stress singularity occurs at the edges of interface between the adhernds and the adhesive, and that crack will initiate from these positions. Also if bubbles are created and remained in the adhesive layer during the bonding process, the stress concentrates around these hole defects. In this paper, the effects of the hole defects on the SIF of interface crack were examined. From results, SIF increased with the hole defects near the interface crack and increased with an decreae in the upper adherend thickness, an increase in the center adhesive thickness.

  • PDF

알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구 (Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint)

  • 유영철;박정환;정의섭;이원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

이종마찰압접재의 접합계면 및 계면근방에서의 피로균열거동 (Behavior of Fatigue Crack at Interface and Around Interface for friction Welded Dissimilar Materials)

  • 오환섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.287-292
    • /
    • 1998
  • In this study behavior of fatigue crack and fatigue fracture is observed under rotary bending fatigue testing in friction welded dissimilar materials. Fatigue fracture most occurred in SM15C heat affected zone around Interface. In case of fatigue test, stress is reduced the position of fracture gradually moves to the welded Interface. Micro crack of heat affected zone surface on SM15C is observed at any different stress.

  • PDF

이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법 (An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials)

  • 정남용;박철희
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.