• Title/Summary/Keyword: interface

Search Result 20,347, Processing Time 0.048 seconds

Development of Multimedia Annotation and Retrieval System using MPEG-7 based Semantic Metadata Model (MPEG-7 기반 의미적 메타데이터 모델을 이용한 멀티미디어 주석 및 검색 시스템의 개발)

  • An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.573-584
    • /
    • 2007
  • As multimedia information recently increases fast, various types of retrieval of multimedia data are becoming issues of great importance. For the efficient multimedia data processing, semantics based retrieval techniques are required that can extract the meaning contents of multimedia data. Existing retrieval methods of multimedia data are annotation-based retrieval, feature-based retrieval and annotation and feature integration based retrieval. These systems take annotator a lot of efforts and time and we should perform complicated calculation for feature extraction. In addition. created data have shortcomings that we should go through static search that do not change. Also, user-friendly and semantic searching techniques are not supported. This paper proposes to develop S-MARS(Semantic Metadata-based Multimedia Annotation and Retrieval System) which can represent and extract multimedia data efficiently using MPEG-7. The system provides a graphical user interface for annotating, searching, and browsing multimedia data. It is implemented on the basis of the semantic metadata model to represent multimedia information. The semantic metadata about multimedia data is organized on the basis of multimedia description schema using XML schema that basically comply with the MPEG-7 standard. In conclusion. the proposed scheme can be easily implemented on any multimedia platforms supporting XML technology. It can be utilized to enable efficient semantic metadata sharing between systems, and it will contribute to improving the retrieval correctness and the user's satisfaction on embedding based multimedia retrieval algorithm method.

Formation of the $CoSi_{2}$ using Co/Zr Bilayer on the Amorphous and the Single Crystalline Si Substrates (단결정과 비정질 Si 기판에서 Co/Zr 이중층을 이용한 $CoSi_{2}$ 형성)

  • Kim, Dong-Wook;Jeon, Hyeong-Tag
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.621-627
    • /
    • 1998
  • The formation of Co-silicide between Co/Zr bilayer on the amorphous and crystalline Si substrates has been investigated. The films of Zr(50$\AA$) and Co(l50$\AA$) were deposited with e-beam evaporation system and were heattreated with the rapid thermal annealing system at the temperatures between 50$0^{\circ}C$ and 80$0^{\circ}C$ with 10$0^{\circ}C$ increments for 30 seconds. The phase identification of Co-silicide was carried out by XRD and the chemical analysis was examined by AES and RBS. The interface morphologies of Co/Zr bilayer films were investigated by cross sectional TEM and HRTEM. $CoSi_2$ was formed epitaxially on the crystalline Si substrate above $700^{\circ}C$ while polycrystalline $CoSi_2$ was grown on the amorphous Si substrate. The formation temperature of Co-silicide on the amorphous Si substrate was about 100 C lower than that on the crystalline Si. The COzSi phase was not identified on the both Si substrates. The formation temperature of first phase of Co-silicide on ColZr bilayer was higher than that on Co mono layer. CoSizlayer formed on the amorphous Si substrate exhibits better uniformity compared to the CoSiz formed on the crystalline substrate. The sheet resistance of CoSiz layer on crystalline Si was lower than that on the amorphous Si at high temperatures.tures.

  • PDF

Characterization and annealing effect of tantalum oxide thin film by thermal chemical (열CVD방법으로 증착시킨 탄탈륨 산화박막의 특성평가와 열처리 효과)

  • Nam, Gap-Jin;Park, Sang-Gyu;Lee, Yeong-Baek;Hong, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.42-54
    • /
    • 1995
  • $Ta_2O_5$ thin film IS a promising material for the high dielectrics of ULSI DRAM. In this study, $Ta_2O_5$ thin film was grown on p-type( 100) Si wafer by thermal metal organic chemical vapo deposition ( MCCVD) method and the effect of operating varialbles including substrate temperature( $T_s$), bubbler temperature( $T_ \sigma$), reactor pressure( P ) was investigated in detail. $Ta_2O_5$ thin film were analyzed by SEM, XRD, XPS, FT-IR, AES, TEM and AFM. In addition, the effect of various anneal methods was examined and compared. Anneal methods were furnace annealing( FA) and rapid thermal annealing( RTA) in $N_{2}$ or $O_{2}$ ambients. Growth rate was evidently classified into two different regimes. : (1) surface reaction rate-limited reglme in the range of $T_s$=300 ~ $400 ^{\circ}C$ and (2: mass transport-limited regime in the range of $T_s$=400 ~ $450^{\circ}C$.It was found that the effective activation energies were 18.46kcal/mol and 1.9kcal/mol, respectively. As the bubbler temperature increases, the growth rate became maximum at $T_ \sigma$=$140^{\circ}C$. With increasing pressure, the growth rate became maximum at P=3torr but the refractive index which is close to the bulk value of 2.1 was obtained in the range of 0.1 ~ 1 torr. Good step coverage of 85. 71% was obtained at $T_s$=$400 ^{\circ}C$ and sticking coefficient was 0.06 by comparison with Monte Carlo simulation result. From the results of AES, FT-IR and E M , the degree of SiO, formation at the interface between Si and TazO, was larger in the order of FA-$O_{2}$ > RTA-$O_{2}$, FA-$N_{2}$ > RTA-$N_{2}$. However, the $N_{2}$ ambient annealing resulted in more severe Weficiency in the $Ta_2O_5$ thin film than the TEX>$O_{2}$ ambient.

  • PDF

Bone-implant contact and mobility of surface-fronted orthodontic micro-implants in dogs (성견에서 표면처리된 교정용 마미크로 임플랜트의 골 접촉률 및 동요도)

  • Park, Seung-Hyun;Kim, Seong-Hun;Ryu, Jun-Ha;Kang, Yoon-Goo;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The purpose of this study was to evaluate the mobility and ratio of the bone-implant contact (BIC) of a sandblasted, large grit and acid-etched (SLA) orthodontic micro-implant. Methods: Ninety-six micro-implants (48 SLA and 48 machined) were implanted in the upper and lower buccal alveolar bone, and palatal bone of four beagle dogs. Two weeks after surgery, orthodontic force (150-200 g) was applied. Two beagles were sacrificed at 4-weeks and the other two at 12-weeks. Histomorphometric comparisons were made between the SLA experimental group and the machined micro-implant as a control group to determine the ratio of contact between the bone and implant. Micro-implant mobility was also evaluated using $Periotest^{(R)}$. Results: Periotest values showed no statistically significant difference in the upper alveolar and palatal bone between groups except for the lower buccal area. BIC in the upper buccal area showed no significant difference between groups both at 4-weeks and 12-weeks. However, both the groups showed a significant difference in BIC ratio in the rest of the experimental areas between 4 weeks and 12 weeks. The experimental group showed active bone remodeling around the bone-implant interface compared to the control group. Conclusions: There were significant differences in the BIC and the Periotest values between the surface-treated and machined micro-implants according to bone quality in the early stage.

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness (Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구)

  • Kim, D.H.;Lee, Eunsook;Kim, Hyun Woo;Seong, Seungho;Kang, J.-S.;Yang, Seung-Mo;Park, Hae-Soo;Hong, JinPyo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.124-128
    • /
    • 2016
  • We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

Usability index evaluation system for mobile WAP service (무선인터넷 서비스 사용성 지수 평가 체계)

  • Park, Hwan-Su
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.152-157
    • /
    • 2008
  • The customer satisfaction of WAP service greatly relies on the usability of the service due to the limited display size of a mobile phone and limitation in realizing UI (User Interface) for function keys, browser, and OS (operating system) Currently, a number of contents providers develop and deliver varying services, and thus, it is critical to control quality level of UI in consistent standards and manner. This study suggests usability index evaluation system to achieve consistent UI quality control of various WAP services. The system adopts both top-down and bottom-up approaches. The former concerns deriving UI design components and evaluation checklists for the WAP, based on the usability attributes and UI principles. The latter concerns deriving usability-related evaluation checklists from the established UI design features, and then grouping them from the viewpoint of usability principles and attributes. This bidirectional approach has two outstanding advantages: it allows thorough examination of potential elements that can cause usability problems from the standpoint of usability attributes, and also derives specific evaluation elements from the perspective of UI design components that are relevant to the real service environment. The evaluation system constitutes a hierarchical structure by networking usability attributes, UI guideline which indicates usability principles for each attribute, and usability evaluation checklist for each UI component that enables specific evaluation. Especially, each evaluation checklist contains concrete contents and format so that it can be readily marked in O/X. The score is based on the ratio of number of items that received positive answer to the number of total items. This enables a quantitative evaluation of the usability of mobile WAP service. The validity of the proposed evaluation system has been proved through comparative analysis with the real usability problems based on the user test. A software was developed that provides guideline for evaluation objects, criteria and examples for each checklist, and automatically calculates a score. The software was applied to evaluating and improving the real mobile WAP service.

  • PDF

The influence of intentional mobilization of implant fixtures before osseointegration (골유착전 임플란트 고정체의 의원성 동요가 골결합에 미치는 영향)

  • Cho, Jin-Hyun;Jo, Kwang-Heon;Cho, Sung-Am;Lee, Kyu-Bok;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the influence of mobilization on bone-implant interface prior to osseointegration of fixtures. Materials and methods: The experimental implants (3.75 mm in diameter, 4.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P). The 80 implants (two in each tibia) were inserted into the monocortical tibias of 20 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 10 groups, Group I (6 wks), Group II (4 days+6 wks), Group III (4 days+1 wk+6 wks), Group IV (1 wk+6 wks), Group V (1 wk+1 wk+6 wks), Group VI (2 wks+6 wks), Group VII (2 wks+ 1 wk+6 wk), Group VIII (3 wks+6 wks), Group IX (3 wks+1 wk+6 wks) and Group X (10 wks). The control groups were Group I and X, the removal torque was measured at 6 wks and 10 wks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once or twice before the final removal torque and the value was measured each time. After which, the implants were put back where they had been except the control groups. All the experimental groups were given a final healing time (6 wks) before the final removal torque test, in which values were compared with the control groups and the 1st and/or 2nd removal torque values in each experimental group. Results: In the final removal torque tests, the removal torque value of Group X (10 wks) was higher than that of Group I (6 wks) in the control groups but not statistically different. There were no significant differences between the experimental groups and control groups (P>.05). In the first removal torque comparison, the experimental groups (4 days or 1 wk) values were significantly lower than the other experimental groups (2 wks or 3 wks). In the comparison of each experimental group according to healing time, the final removal torque value was significantly higher than the 1st torque test value. Conclusion: Once or twice mobilization of fixture prior to osseointegration did not deter the final bone to implant osseointegration, if sufficient healing time was given.