• Title/Summary/Keyword: interdisciplinary water resources management

Search Result 13, Processing Time 0.041 seconds

Current Issues, Trends and Possibilities in Water Sector in Nepal

  • Shrestha, Hari Krishna
    • Water for future
    • /
    • v.52 no.8
    • /
    • pp.56-66
    • /
    • 2019
  • Nepal is bestowed with abundant water. With more than 1500 mm average annual rainfall in the country, a vast quantity of underutilized groundwater in the Terai belt, and the water stored in snowcaps in the Himalayas, aquifers in the mountains and glacial lakes, Nepal is potentially in an advantageous position in terms of per capita availability. However, low emphasis in management aspect of water and high emphasis in infrastructural developments related to water resources management has resulted in conversion of water in Nepal from a resource to a burden. The global climate change, reduction in number of rainy days, increase in intensity of rainfall during wet monsoon season, encroachment of river banks for settlement, inadequate release of environmental flows from hydropower plants, and attempt to tame the mighty and high velocity rivers of Nepal have resulted in increasing number of water induced disasters (flood and landslide), rise in conflict between local residents and hydropower developers, higher number of devastating landslides, and in some extreme cases mass migration of residents resulting in climate refugees. There is a ray of hope; the awareness level of the people regarding sustainable use of water resources is increasing, the benefit sharing mechanism is gradually being implemented, the role of interdisciplinary and integrated water resources management is appreciated at a higher level and the level of preparedness against flood and landslides is at a higher degree compared to a couple of decades ago. With the use of renewable energy sources, the possibilities for sustainable and productive use of water are on the rise in Nepal.

An Approximate Solution for Diffraction-Induced Shoreline in a Double Headland and Comparison with Field Measurement

  • Shoaib, Muhammad;Kim, Dong Hee;Lee, Jung Lyul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.193-193
    • /
    • 2016
  • In past decades beach erosion has been remarkably severe along coasts of different parts of the world, so that distinct types of coastal protective measures have been implemented; seawalls, wave-dissipating breakwaters, groins, artificial headlands or detached breakwaters have been constructed. In recent years, at Bongpeong beach, South Korea, an artificial headland was constructed to stop the beach erosion. The structure resulted in severe beach erosion of the adjoining places. In order to stop the consequences, another headland was constructed at some distance, but the construction of double headland did not prevent the erosion significantly. This paper focuses on the accurate design of the artificial double headland construction. The study presents the application of equilibrium shoreline empirical formula of parabolic type to estimate the equilibrium stages of the artificial double headland beaches and an analytic solution is presented in the present study. The research has solved the empirical formula of parabolic type to find the optimum result by considering the essential parameters that influence the erosion after the construction of double headland.

  • PDF

Interdisciplinary Research for Pre-prevention Measures of turbid water with Watershed Units (수계단위 탁수예방 대책 수립을 위한 학제간 연구)

  • Yum, Kyung-Tak;Cho, Yong-Deok;Kim, Jae-Yun;Ban, Yang-Jin;Park, Bong-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.544-549
    • /
    • 2008
  • 최근 임하댐, 소양강댐을 대상으로 탁수의 문제가 심각하게 제시되고 있으며, 이에 대한 대책을 수립하기 위해 정부, 공공연구기관, 대학 등에서 다양한 연구를 진행하고 있으나 탁수 발생에 대한 근본적인 대책 수립과 이의 효과에 대한 분석이 이루어지고 있지 않은 실정이다. 현시점에서 탁수발생의 근본적인 원인을 규명하고 이에 대한 대책이 계획적이고 치밀하게 수립되어야 할 것으로 판단 된다. 우리나라의 기후변화는 지난 100년($1906{\sim}2005$) 동안 평균 기온이 약 $1.5^{\circ}C$ 상승하였으며, 강우 강도가 큰 집중호우의 발생빈도는 약 18% 증가한 반면, 강우일수는 약 14% 감소하는 추세에 있다. 또한, 지구온난화로 인하여 식생대, 어종 등 생태계가 아열대성 기후로 진행되고 있으며, 탁수발생의 원인은 이상기후로 인한 강우강도의 증가뿐만 아니라, 집중홍수 빈발, 식생대(Vegetation) 변화와 유역관리(Watershed Management) 소홀 등의 복합적인 원인에 의하여 새롭게 발생되는 현상이다. 또한, 최근의 탁수는 댐 상류는 물론 수계전반에 걸쳐 발생하고 있으며, 지난 2007년 발생한 북한강 수계의 탁수문제 등에서 이제는 정부차원의 체계적인 발생원인 규명과 대책 마련이 필요한 실정이다. 댐 및 하천으로 유입되는 탁수는 저수지의 고탁도 현상의 장기화를 야기시키며, 이로 인해 댐 저수지 및 하류하천 수질악화, 정수처리 비용 증가 등 댐 저수지의 효율적인 수질관리가 어려운 실정이다. 한편, 고농도의 인(P)이 유입되어 저수지내 부영양화(Eutrophication) 및 수생태계의 변화를 초래하고 있다. 앞으로도 잠재적 탁수발생 가능성이 커질 것으로 전망됨에 따라 탁수발생 메커니즘 규명, 댐 저수지내 수리동역학적 거동특성 및 생태계에 영향(Ecological Impact) 등 탁수와 관련된 미개척 분야의 연구가 시급한 상황이다. 댐과 유역을 분리하여 수립된 기존의 대책으로는 탁수발생의 근본적인 원인규명과 대책 수립이 어려운 실정이므로 수계단위로 탁수에 대한 연구가 진행되어야 한다. 따라서 수계별로 탁수발생의 근본적인 원인을 규명하기 위하여는 수계별 탁수발원지 및 발생원인 조사, 댐 저수지의 수리동역학적 탁수거동 해석, 탁수발생 잠재성 평가, 수계단위 탁수예방 대책 수립을 위한 우선순위 결정 등을 포함한 학제적인(Interdisciplinary) 연구를 진행할 계획이다.

  • PDF

Water Quality Monitoring by Snowmelt in Songcheon, Doam Lake Watershed (도암호 유역의 융설에 의한 수질 변화 모니터링)

  • Kwon, Hyeokjoon;Hong, Dahye;Byeon, Sangdon;Lim, Kyoungjae;Kim, Jonggun;Nam, Changdong;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.87-95
    • /
    • 2021
  • The Doam Lake Watershed is one of Gangwon-do's non-point source management areas. This area has a lot of snowfall in winter, and it is expected that there will be a lot of soil erosion in early spring due to snow melting. In this study, snow melting was monitored in the Doam Lake watershed from February to 3, 2020. It was conducted to analyze the water quality changes by calculating the concentration of non-point source pollution caused by snowmelt, and to compare the concentration of water quality during snowmelt event with rainfall and non-rainfall event. As a result of water quality analysis, Event Mean Concentration (EMC) at the first monitoring was SS 33.9 mg/L, TP 0.13 mg/L, TN 4.33 mg/L, BOD 1.35 mg/L, TOC 1.84 mg/L. At the second monitoring, EMC were SS 81.3 mg/L, TP 0.15 mg/L, TN 3.12 mg/L, BOD 1.32 mg/L, TOC 3.46 mg/L. In parameter except SS, it showed good water quality. It is necessary to establish management measures through continuous monitoring.

Calculation of Soil Moisture and Evapotranspiration of KLDAS applying Ground-Observed Meteorological Data (지상관측 기상자료를 적용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • Park, Gwangha;Kye, Changwoo;Lee, Kyungtae;Yu, Wansik;Hwang, Eui-ho;Kang, Dohyuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1611-1623
    • /
    • 2021
  • Thisstudy demonstratessoil moisture and evapotranspiration performance using Korea Land Data Assimilation System (KLDAS) under Korea Land Information System (KLIS). Spin-up was repeated 8 times in 2018. In addition, low-resolution and high-resolution meteorological data were generated using meteorological data observed by Korea Meteorological Administration (KMA), Rural Development Administration (RDA), Korea Rural Community Corporation (KRC), Korea Hydro & Nuclear Power Co.,Ltd. (KHNP), Korea Water Resources Corporation (K-water), and Ministry of Environment (ME), and applied to KLDAS. And, to confirm the degree of accuracy improvement of Korea Low spatial resolution (hereafter, K-Low; 0.125°) and Korea High spatial resolution (hereafter, K-High; 0.01°), soil moisture and evapotranspiration to which Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and ASOS-Spatial (ASOS-S) used in the previous study were applied were evaluated together. As a result, optimization of the initial boundary condition requires 2 time (58 point), 3 time (6 point), and 6 time (3 point) spin-up for soil moisture. In the case of evapotranspiration, 1 time (58 point) and 2 time (58 point) spin-ups are required. In the case of soil moisture to which MERRA-2, ASOS-S, K-Low, and K-High were applied, the mean of R2 were 0.615, 0.601, 0.594, and 0.664, respectively, and in the case of evapotranspiration, the mean of R2 were 0.531, 0.495, 0.656, and 0.677, respectively, indicating the accuracy of K-High was rated as the highest. The accuracy of KLDAS can be improved by securing a large number of ground observation data through the results of this study and generating high-resolution grid-type meteorological data. However, if the meteorological condition at each point is not sufficiently taken into account when converting the point data into a grid, the accuracy is rather lowered. For a further study, it is expected that higher quality data can be produced by generating and applying grid-type meteorological data using the parameter setting of IDW or other interpolation techniques.

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

Rip Current Sensitive Analysis Using Rose Diagram for Wave-Induced Current Vectors at Haeundae Beach, Korea (해빈류 벡터 장미도를 통한 해운대 해수욕장의 이안류 민감도 분석)

  • Kim, Dong Hee;Lee, Sahong;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.320-326
    • /
    • 2016
  • Rip current forecasts, based on intensity, are marked in four levels—notice, watch, warning, and danger. However, numerical results are represented by current vectors, whose magnitudes are then converted into predictive levels. In the present study, the rose diagram is adapted as a determinative forecasting index and examined for the case of an ideal rip channel consisting of surface, bottom, and averaged currents. Further, it is employed in the sensitivity analysis of wave-induced currents generated by wave conditions at the Haeundae Beach. The simulation of surface onshore and bottom undertow currents is accomplished by including a mass flux term in the wave-averaged continuity equation.

Calculation of Soil Moisture and Evapotranspiration for KLDAS(Korea Land Data Assimilation System) using Hydrometeorological Data Set (수문기상 데이터 세트를 이용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;LEE, Kyung-Tae;KYE, Chang-Woo;YU, Wan-Sik;HWANG, Eui-Ho;KANG, Do-Hyuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.65-81
    • /
    • 2021
  • In this study, soil moisture and evapotranspiration were calculated throughout South Korea using the Korea Land Data Assimilation System(KLDAS) of the Korea-Land Surface Information System(K-LIS) built on the basis of the Land Information System (LIS). The hydrometeorological data sets used to drive K-LIS and build KLDAS are MERRA-2(Modern-Era Retrospective analysis for Research and Applications, version 2) GDAS(Global Data Assimilation System) and ASOS(Automated Synoptic Observing System) data. Since ASOS is a point-based observation, it was converted into grid data with a spatial resolution of 0.125° for the application of KLDAS(ASOS-S, ASOS-Spatial). After comparing the hydrometeorological data sets applied to KLDAS against the ground-based observation, the mean of R2 ASOS-S, MERRA-2, and GDAS were analyzed as temperature(0.994, 0.967, 0.975), pressure(0.995, 0.940, 0.942), humidity (0.993, 0.895, 0.915), and rainfall(0.897, 0.682, 0.695), respectively. For the hydrologic output comparisons, the mean of R2 was ASOS-S(0.493), MERRA-2(0.56) and GDAS (0.488) in soil moisture, and the mean of R2 was analyzed as ASOS-S(0.473), MERRA-2(0.43) and GDAS(0.615) in evapotranspiration. MERRA-2 and GDAS are quality-controlled data sets using multiple satellite and ground observation data, whereas ASOS-S is grid data using observation data from 103 points. Therefore, it is concluded that the accuracy is lowered due to the error from the distance difference between the observation data. If the more ASOS observation are secured and applied in the future, the less error due to the gridding will be expected with the increased accuracy.

Water Scarcity Assessment Using Green and Blue Water Concepts (그린워터 및 블루워터를 이용한 물부족 평가)

  • Kim, Sung Eun;Lee, Dong Kun;Yang, Byung Sun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.267-278
    • /
    • 2018
  • With climate change and population growth, there are significant increases in water scarcity. There have been water security assessments to abate the gap between water demand and availability to support water resource management. However, most of the assessments are focusing on the water that flows through either on or below the land surface, failing to consider water that infiltrates and can be used by vegetation. This study presents water scarcity assessment accounting for Blue and Green water concept, and applied the method to Boryung region. Monthly streamflow, evapotranspiration, and soil moisture were estimated by SWAT modeling, and each of them was used to analyze Blue and Green water scarcity. Blue and Green water scarcity had different aspect, and the result indicated the time when water scarcity is more likely to happen. The water scarcity assessment framework presented in this paper provides novel assessment method integrating hydrologic and ecosystem aspects, thereby improving the understanding of how water resources should be managed.

A Review of Recent Research into Coastal Groudwater Problems and Associated Case Studies (해안 지하수 연구 동향 및 사례 보고)

  • Chang, Sun Woo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.597-608
    • /
    • 2014
  • It is widely assumed that climate change and other anthropogenically driven processes are having a serious impact on coastal environments. One such impact is saltwater intrusion into coastal aquifers, which has resulted in the loss of groundwater resources. The pattern of saltwater intrusion is strongly dependent on regional hydrogeological characteristics. This study reviews recent qualitative and quantitative research into this problem, and considers relevant case studies. In addition, the characteristics of the aquifers from two representative volcanic islands (Jeju Island, Korea and Oahu Island, USA) are compared. The fundamental theory of density-dependent flow used to model saltwater intrusion processes and the programs that are widely used to simulate saltwater intrusion based on density-driven problems are also investigated. It is expected that the knowledge gained from this review of previous studies can be used to help improve groundwater management practices in Korea and also to inform future interdisciplinary studies.