• Title/Summary/Keyword: intercritical annealing

Search Result 24, Processing Time 0.019 seconds

저탄소 2상조직강의 열처리공정 조건에 따른 기계적특성 변화

  • Kim, Hun-Dong;Park, Jin-Seong;Mun, Man-Bin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • Recently high strength steel sheets with high formability for automotive parts have been being developed to meet the demands for passenger safety and weight reduction of car body. Among these high strength steels, dual-phase steels are regarded as one of the attractive steels due to their excellent mechanical properties including high strength and ductility. However, to be successfully applied to automotive parts they should be corrosion resistant enough to satisfy the required quality of car maker. This also requires their feasibility for galvannealed production including hot dip galvanizability. In this study has been placed on understanding the effects of heat-treatment(austenizing and isothermal treatment) on the microstructures and mechanical properties of a 0.06C-0.03Si-2.0Mn high strength steel for cold forming. The microstructure and phase distribution were examined with eth aids of SEM, EBSD, TEM etc.. Through the study the production of 590MPa grade DP GA steels with good formability and galvaniability were shown to be possible.

  • PDF

Effect of Repeated Quenching Heat Treatment on Microstructure and Dry Sliding Wear Behaviour of Low Carbon PM Steel

  • Gural, Ahmet;Tekeli, Suleyman;Ozyurek, Dursun;Guru, Metin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.570-571
    • /
    • 2006
  • The mixed atomized iron powders with 0.3% graphite and 1% Ni powders were cold pressed and sintered at $1200^{\circ}C$ for 30 min under pure Ar gas atmosphere. Some of the sintered specimens were intercritically annealed at $760^{\circ}C$ and quenched in water (single quenching). The other sintered specimens were first fully austenized at $890^{\circ}C$ and water quenched. These specimens were then intercritically annealed at $760^{\circ}C$ and re-quenched in water. The experimental results showed that the wear coefficient effectively decreased in the double quenched specimen.

  • PDF

Microstructural engineering of dual phase steel to aid in bake hardening

  • Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Low carbon steel of composition 0.05C - 0.18 Mn - 0.012 Si is intercritically annealed at temperatures $750^{\circ}C$, $775^{\circ}C$ and $800^{\circ}C$. The equilibrated alloys of different amounts of austenite with varying carbon contents are quenched in iced water. The same alloys are subcritically annealed at $675^{\circ}C$ and $700^{\circ}C$ for varying periods of times; the subcritically annealed alloy samples are quenched in iced water. Optical, scanning electron and transmission electron microscopy are carried out for all the samples. The dislocation structure, its distribution and density present in the above prepared duplex ferrite martensite steels are studied. The martensites are found to be highly dislocated due to lattice invariant deformation. At the same time ferrite adjoining the martensite areas also exhibits quite a high dislocation density. The high dislocation density is favorable for strain ageing and hence bakes hardenability. EDS analyses were carried out for both martensite and ferrite phases; it is found that the degree of supersaturation in ferrite together with carbon content in martensite varies with the process parameters. The microhardness test results show that the hardness values of different phases differ appreciably with process parameters. The microstructures and the corresponding microanalyses reveal that differently processed steels contain phases of varying compositions and different distribution.

Effect of Prior Deformation on the Sliding Wear of Ultra-fine Grained Ferrite-Martensite Dual Phase Steel (초기 소성변형이 초미세 결정립 페라이트-마르텐사이트 이상조직 탄소강의 건식 미끄럼마멸 특성에 미치는 영향)

  • Park, J.K.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.521-524
    • /
    • 2008
  • Effect of prior deformation on the sliding wear of the ultra-fine grained (UFG) ferrite-martensite dual phase (DP) steel was investigated. The UFG DP steel was fabricated by the ECAP and subsequent intercritical annealing. The steel was cold rolled before the wear test, and the effect of the prior deformation on the wear was examined. The wear tests were carried out at various loads against a bearing steel ball. The wear rate of the UFG DP steel that did not experience the prior deformation was higher than that of the coarse-grained (CG) DP steel, because of more severe surface shear deformation. The wear rate of the specimens with prior deformation was much higher than that of the specimen without prior deformation. The deformed CG DP specimen showed higher rate than the deformed UFG DP specimen, and the rate-variation of the CG DP steel was much bigger under the same test condition.

  • PDF