• Title/Summary/Keyword: inter-symbol interference (ISI)

Search Result 176, Processing Time 0.03 seconds

4-level 6/9 Modulation Code for Holographic Data Storage (홀로그래픽 데이터 저장장치를 위한 4레벨 6/9 변조부호)

  • Kim, Byungsun;Park, Keunhwan;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.574-578
    • /
    • 2014
  • A holographic data storage (HDS) has some advantages of high storage capacity, fast transmission, and short access time. However, there are two major concerns with the system which are two-dimensional (2D) inter-symbol interference (ISI) and inter-page interference (IPI). Thus, this paper proposes a 4-level 6/9 modulation code which mitigate inter-symbol interference (ISI).

Application of 3GPP LTE and IEEE 802.11p Systems to Ship Ad-Hoc Network with the Existence of ISI

  • Su, Xin;Hui, Bing;Chang, KyungHi;Jin, Gwangja
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • In order to provide high data rate and real time services under maritime environment, link-level performance of ship ad-hoc network (SANET) based on 3GPP LTE and IEEE 802.11p (WAVE) specifications are investigated and discussed in this paper. The measured maritime channel, whose delay spread is longer than the length of guard interval (GI) of both 3GPP LTE and IEEE 802.11p specifications, is adopted for the link-level simulations. For the purpose of eliminating inter-symbol interference (ISI) due to insufficient GI length, double antenna pattern (DAP) scheme and advanced time-domain decision-feedback equalizer (DFE) are proposed for LTE and WAVE systems, respectively. The proposed DFE removes the ISI in a same manner as the residual inter-symbol interference cancellation (RISIC) algorithm, but the inter-carrier interference (ICI) is reduced via cyclicity removal instead of cyclicity restoration used in the RISIC algorithm. Compared with existing schemes, our proposed DFE is a robust technique to overcome the severe ISI channel which has a comparatively large delay spread. Based on simulation results, not only comparisons between systems are discussed, but also some reformative suggestions are given.

ISI Estimation Using Iterative MAP for Faster-Than-Nyquist Transmission (나이퀴스트 율보다 빠른 전송 시스템에서 반복 MAP을 이용한 ISI 추정 기법)

  • Kang, Donghoon;Kim, Haeun;Park, Kyeongwon;Lee, Arim;Oh, Wangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.967-974
    • /
    • 2017
  • In this paper, we propose an inter-symbol interference (ISI) estimation scheme based on the maximum a posteriori (MAP) algorithm for faster-than-Nyquist (FTN) systems. Unfortunately, the ISI estimator based on the MAP algorithm requires relatively high computational complexity. To reduce the complexity of the MAP based ISI estimator, we propose a hybrid ISI estimation scheme based on the MAP and successive interference cancellation (SIC) algorithms. The proposed scheme not only offers good ISI estimation performances but also requires reasonably low complexity.

Bit Error Parameters on Passive Phase Conjugation Underwater Acoustic Communication (수동 페이저 컨쥬게이션 수중음향통신 기법의 비트오류 영향 인자)

  • Yoon, Jong-Rak;Park, Moon-Kab;Ro, Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.454-461
    • /
    • 2005
  • Time spread due to the multipath in underwater acoustic channel, induces ISI (Inter-Symbol Interference) which degrades the performance of the underwater acoustic communication system. The passive phase conjugation (PPC) which improves the signal to multipath interference ratio (SMR) and therefore reduces the frequency selectivity. is a diversity communication technique giving a less ISI under multipath fading channel. Its frequency selectivity depends on the number of receiver array sensors and time varying source to receiver range. In this study, frequency selectivity of the PPC and its effects on bit error of underwater acoustic communication is analyzed by numerical simulation.

Allowing a Large Access Timing Offset in OFDM-CDMA Using ZCZ Code and Block Spreading (ZCZ 부호와 블록 확산을 이용한 사용자 동기화 경감 OFDM-CDMA)

  • Na, Donj-jun;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.23-36
    • /
    • 2016
  • We propose a new type of OFDM-CDMA scheme which allows large inter-user timing offset using zero correlation zone(ZCZ) code in conjunction with block spreading technique. Moreover to maximize spectral efficiency, the proposed OFDMA does not have guard time(GT). This is opposite to the trends in the conventional schemes where GT are supposed to be larger to allow larger inter-user timing offset. It is remarkable that the proposed GT-free OFDM-CDMA scheme completely cancels inter-user interference in the multipath fading simply by despreading process. This inter-user interference-free feature still remains even there exist inter-user timing offsets as large as multiple OFDM symbols. Although the self-user interference exists due to no GT, it can be effectively suppressed by simple successive interference cancellation(SIC) from the first symbol in spread block as it is free from inter symbol interference(ISI).

A Study on Hamming Codes for Mitigating ISI on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에서 ISI 완화를 위한 해밍 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this paper, in order to mitigate ISI(inter-symbol interference) in a diffusion-based molecular communication channel, an ISI Hamming code is proposed in which ISI characteristics are applied to a channel decoding algorithm. In order to prove the bit error rate performance of the proposed channel code, the bit error rate performance of the major channel codes applied to the molecular communication channel with ISI was compared and analyzed through simulation. From the simulation results, it can be seen that the bit error rate performance of the ISI Hamming code is the best when the number of radiated molecules is less than or equal to 1100. In addition, when the number of transmitted molecules is M=1000, the decoding method of the ISI Hamming code proposed in this paper has improved the bit error rate of approximately 5.9×10-5 compared to the Hamming code using only soft values. Compared with the ISI-mitigating channel code, which is effective for removing ISI in the molecular communication channel, the ISI Hamming code proposed in this paper is the most advantageous in a channel environment where the number of transmitted molecules is not big (M<1100). And we can see that the ISI-mitigating channel code is more advantageous when the number of transmitted molecules is large(M>1100).

A Channel Assignment Technique for OFDMA-based Wireless Mesh Network with Different Time Delays (서로 다른 지연 시간을 갖는 OFDMA 기반 Wireless Mesh Network에서의 채널 할당 기법)

  • Yoo, Hyun-Il;Park, Chang-Hwan;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.568-576
    • /
    • 2011
  • In this paper, a channel assignment technique to mitigate interferences due to ISI(Inter Symbol Interference) and ICI(Inter Carrier Interference) caused by TDoA(Time Difference of Arrival) among distributed MRs(Mesh Routers) in OFDMA(Orthogonal Frequency Division Multiple Access)-based WMN(Wireless Mesh Network) is proposed. The SINR(Signal to Interference and Noise Ratio) associated with the channel assignment for each MR is defined to minimize the effect of ISI and ICI due to TDoA in WMN, which is then used to propose an channel assignment technique considering fairness constraint. It is verified by computer simulation that the proposed channel assignment technique can improve the performance of BER(Bit Error Rate) in WMNs with compared to the conventional technique.

12/16 Modulation Code for 4-Level Holographic Data Storage (4-레벨 홀로그래픽 데이터 저장장치를 위한 12/16 변조부호)

  • Jeong, Seongkwon;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.10-14
    • /
    • 2016
  • Holographic data storage (HDS) features short access times, high storage capacities, and fast transfer rates since the data is recorded and read not by lines but by pages within a volume of holographic material. Furthermore, a single pixel can store more than 1 bit if it is multi-level. However, there is a problem of inter-symbol interference (ISI) between the adjacent symbols if the level difference between neighboring symbols is large. Hence, one should avoid side by side placement of the smallest level symbol and the largest level symbol in any direction. This paper proposes a 12/16 modulation code for 4-level holographic data storage, so that the largest symbol is 3 and the smallest symbol is 0, in order to reduce the ISI.

Joint Demodulation and Decoding System for FTN (FTN 시스템을 위한 동시 복조 및 복호 기법)

  • Kang, Donghoon;Oh, Wangrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose an efficient joint demodulation and decoding scheme for FTN (Faster than Nyquist) systems. Several previous works have demonstrated that ISI (Inter Symbol Interference) cancellation schemes based on BCJR (Bahl-Cocke-Jelinek-Raviv) algorithm are suitable for FTN systems. Unfortunately, required complexity of the previous ISI cancellation schemes is very high, especially when a multi-level modulation scheme is employed. In this paper, we propose a joint demodulation and decoding scheme for FTN systems with an iteratively decodable channel coding scheme and a multi-level modulation. Compared with the previously proposed schemes, the proposed scheme not only offers reliable performance but also requires relatively low complexity. Also, the proposed scheme can be easily applied to the FTN system with a multi-level modulation with a minor modification.

A Study of Efficient Viterbi Equalizer in FTN Channel (FTN 채널에서의 효율적인 비터비 등화기 연구)

  • Kim, Tae-Hun;Lee, In-Ki;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1323-1329
    • /
    • 2014
  • In this paper, we analyzed efficient decoding scheme with FTN (Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. we proposed viterbi equalizer model to minimize ISI (Inter-Symbol Interference) when FTN signal is transmitted. the proposed model utilized interference as branch information. In this paper, to decode FTN singal, we used turbo equalization algorithms that iteratively exchange probabilistic information between soft Viterbi equalizer (BCJR method) and LDPC decoder. By changing the trellis diagram in order to maximize Euclidean distance, we confirmed that performance was improved compared to conventional methods as increasing throughput of FTN signal.