• Title/Summary/Keyword: intensity of rainfall

Search Result 757, Processing Time 0.029 seconds

Analysis of Correlation between Particulate Matter in the Atmosphere and Rainwater Quality During Spring and Summer of 2020 (봄·여름철 대기 중 미세먼지와 빗물 수질 상관성 분석)

  • Park, Hyemin;Kim, Taeyong;Heo, Junyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1859-1867
    • /
    • 2021
  • This study investigated seasonal characteristics of the particulate matter (PM) in the atmosphere and rainwater quality in Busan, South Korea, and evaluated the seasonal effect of PM10 concentration in the atmosphere on the rainwater quality using multivariate statistical analysis. The concentration of PM in the atmosphere and meteorological observations(daily precipitation amount and rainfall intensity) are obtained from automatic weather systems (AWS) by the Korea Meteorological Administration (KMA) from March 2020 to August 2020. Rainwater samples (n = 216, 13 rain events) were continuously collected from the beginning of the precipitation using the rainwater collecting device at Pukyong National University. The samples were analyzed for pH, EC (electrical conductivity), water-soluble cations(Na+, Mg2+, K+, Ca2+, and NH4+), and anions(Cl-, NO3-, and SO42-). The concentration of PM10 in the atmosphere was steadily measured before and after the precipitation with a custom-built PM sensor node. The measured data were analyzed using principal component analysis (PCA) and Pearson correlation analysis to identify relationships between the concentration of PM10 in the atmosphere and rainwater quality. In spring, the daily average concentration of PM10 (34.11 ㎍/m3) and PM2.5 (19.23 ㎍/m3) in the atmosphere were relatively high, while the value of daily precipitation amount and rainfall intensity were relatively low. In addition, the concentration of PM10 in the atmosphere showed a significant positive correlation with the concentration of water-soluble ions (r = 0.99) and EC (r = 0.95) and a negative correlation with the pH (r = -0.84) of rainwater samples. In summer, the daily average concentration of PM10 (27.79 ㎍/m3) and PM2.5 (17.41 ㎍/m3) in the atmosphere were relatively low, and the maximum rainfall intensity was 81.6 mm/h, recording a large amount of rain for a long time. The results indicated that there was no statistically significant correlation between the concentration of PM10 in the atmosphere and rainwater quality in summer.

APPLICATION AND EVALUATION OF THE GLEAMS MODEL TO A CATTLE GRAZING PASTURE FIELD IN NORTH ALABAMA

  • Kang, M. S.;P. prem, P.-Prem;Yoo, K. H.;Im, Sang-Jun
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.55-68
    • /
    • 2004
  • The GLEAMS (Groundwater Loading Effects of Agricultural Management System, version 3.0) water quality model was used to predict hydrology and water quality and to evaluate the effects of soil types from a cattle-grazed pasture field of Bermuda-Rye grass rotation with poultry litter application as a fertilizer in North Alabama. The model was applied and evaluated by using four years (1999-2002) of field-measured data to compare the simulated results for the 2.71- ha Summerford watershed. $R^2$ values between observed and simulated runoff, sediment yields, TN, and TP were 0.91, 0.86, 0.95, and 0.69, respectively. EI (Efficiency Index) of these parameters were 0.86, 0.67, 0.70, and 0.48, respectively. The statistical parameters indicated that GLEAMS provided a reasonable estimation of the runoff, sediment yield, and nutrient losses at the studied watershed. The soil infiltration rates were compared with the rainfall events. Only high intensity rainfall events generated runoff from the watershed. The measured and predicted infiltration rates were higher during dry soil conditions than wet soil conditions. The ratio of runoff to precipitation was ranging from 2.2% to 8.8% with average of 4.3%. This shows that the project site had high infiltration and evapotranspiration which generated the low runoff. The ratio of runoff to precipitation according to soil types by the GLEAMS model appeared that Sa (Sequatchie fine sandy loam) soil type was higher and Wc (Waynesboro fine sandy loam, severely eroded rolling phase) soil type relatively lower than the weighted average of the soil types in the watershed. The model under-predicted runoff, sediment yields, TN, and TP in Wb (Waynesboro fine sandy loam, eroded undulating phase) and Wc soil types. General tendency of the predicted data was similar for all soil types. The model predicted the highest runoff in Sa soil type by 105% of the weighted average and the lowest runoff in Wc soil type by 87% of the weighted average

  • PDF

Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea (수도권 지역의 도시 기상 특성)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.257-271
    • /
    • 2011
  • The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.

Analysis of Optical Properties of Organic Carbon for Real-time Monitoring (유기탄소 실시간 모니터링을 위한 분광학적 특성인자 분석)

  • You, Youngmin;Park, Jongkwan;Lee, Byungjoon;Lee, Sungyun
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.344-354
    • /
    • 2021
  • Optical methods such as UV and fluorescence spectrophotometers can be applied not only in the qualitative analysis of dissolved organic matter (DOM), but also in real-time quantitative DOM monitoring for wastewater and natural water. In this study, we measure the UV254 and fluorescence excitation emission spectra for a sewage treatment plant influent and effluent, and river water before and after sewage effluent flows into the river to examine the composition and origin of DOM. In addition, a correlation analysis between quantified DOM characteristics and dissolved organic carbon (DOC) was conducted. Based on the fluorescence excitation emission spectra analysis, it was confirmed that the protein-type tryptophan-like DOM was the dominant substance in the influent, and that the organic matter exhibited relatively more humic properties after biological treatment. However, DOM in river water showed the fluorescence characteristics of terrestrial humic-like and algal tyrosine-like (protein-like) organic matter. In addition, a correlation analysis was conducted between the DOC and optical indices such as UV254, the fluorescence intensity of protein-like and humic-like organic matter, then DOC prediction models were suggested for wastewater and river monitoring during non-rainfall and rainfall events. This study provides basic information that can improve the understanding of the contribution of DOC concentration by DOM components, and can be used for organic carbon concentration management in wastewater and natural water.

Evaluation of Runoff and Pollutant Loads using L-THIA 2012 Runoff and Pollutant Auto-calibration Module and Ranking of Pollutant Loads Potential (L-THIA 2012 유출 및 수질 자동 보정 모듈을 이용한 유출/비점부하량 산정 및 비점오염 부하량 포텐셜 등급화)

  • Jang, Chunhwa;Kum, Donghyuk;Ha, Junsoo;Kim, Kyoung-Soon;Kang, Dong Han;Kim, Keuk-Tai;Shin, Dong Suk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Urbanization from agricultural/forest areas has been causing increased runoff and pollutant loads from it. Thus, numerous models have been developed to estimate NPS loading from urban area and Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to evaluate effects of landuse changes on runoff and pollutant loads. However, the L-THIA model could not consider rainfall intensity in runoff evaluation. Therefore, the L-THIA model, capable of simulating runoff using 10-minute rainfall data, was applied to the study areas for evaluation of estimated runoff and NPS. The estimated Nash-Sutcliffe coefficient (NSE) values were over 0.6 for runoff, BOD, TN, and TP for most sites and watershed. The calibrated model was further extended to other counties for pollutant load potential evaluation. Pollutant load potential maps were developed and target areas were identified. As shown in this study, the L-THIA 2012 can be used for evaluation runoff and pollutant loads with limited data sets and its estimation could be used in identifying pollutant load hot spot areas for implementation of site-specific Best Management Practices.

Effect of Turfgrasses to Prevent Soil Erosion (잔디류가 토양유실 방지에 미치는 영향)

  • Ahn, Byung-Goo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • Recent climatic changes by global warming include increased amount and intensity of rainfall. This study was conducted to find out possible roles of turfgrasses to reduce the impact of climatic changes, especially surface soil erosion. Soil erosions by intensive rain were measured after each significant precipitation from the artificially sloped plots of zoysiagrass, cool-season grass mixture of Kentucky bluegrass and perennial ryegrass and other typical korean summer crops. Sodded zoysiagrass resulted in minimal annual soil erosion followed by strip-sodded zoysiagrass and cool-season turfgrass mixture while dry-field rice and bean cultivations eroded the surface soils of 5 to 10 MT $ha^{-1}yr^{-1}$ and pepper cultivation resulted in 7 to 14 MT $ha^{-1}yr^{-1}$ annual loss of surface soil. Annual loss of surface soil from bare land with hand weeding was up to 18 MT $ha^{-1}yr^{-1}$ while greatly reduced soil erosion was observed from weed grown treatment.

The application of reliability analysis for the design of storm sewer (우수관의 설계를 위한 신뢰성해석기법의 적용)

  • Kwon, Hyuk Jaea;Lee, Kyung Je
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.887-893
    • /
    • 2018
  • In this study, the optimum design technology is suggested by using reliability analysis method. Nowadays, urban flood inundation is easily occurred because of local heavy rain. Traditional deterministic design method for storm sewer may underestimate the size of pipe. Therefore, stochastic method for the storm sewer design is necessary to solve this problem. In the present study, reliability model using FORM (First Order Reliability Method) was developed for the storm sewer. Developed model was applied to the real storm sewers of 5 different areas. Probability of exceeding capacity has been calculated and construction costs according to diameter have been compared. Probability of exceeding capacity of storm sewers of 5 areas have been calculated after estimating the return period of rainfall intensity.

Analysis on the Effect of Infiltration Collector Well Installation on the Water Control (침투통의 설치에 따른 치수효과 분석)

  • Shim, Jae-hyun;Lee, Cheol-kyu;Lee, Jong-kook;Kim, Jin-young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.298-302
    • /
    • 2004
  • In this study, the runoff reduction effect was analyzed quantitatively focusing on the infiltration collector well located in the test area. On the basis of the analysis of the data obtained by examining the real-time measurement field data, the runoff reduction was examined through the measured rainfall of the year 2003 by applying the analysis result, with the PCSWMM model to the Kiheung-Gugal residential area, which is selected as the test basin. According to the analysis, it is revealed that an infiltration collector well can reduce up to $65\~98\%$ of runoffs, compared to a conventional one. For measured rainfalls, an infiltration collector well was able to reduce up to $15\~23\%$ of runoffs and $3\~25\%$ of peak runoffs. These results show that the effects of infiltration collector wells might vary with rainfall intensity and its duration. However, the infiltration collector well was confirmed as the one of the alternatives of runoff reduction facilities in urbanized catchment.

  • PDF

Infiltration Rate of Some Upland Soils in Korea (우리나라 밭토양의 수분침투속도(水分浸透速度)에 관하여)

  • Jung, Y.S.;Ryu, K.S.;Im, J.N.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 1980
  • The infiltration rates of the upland soils on hill side slope were investigated in situ using rainulator of which rainfall intensity was 100mm/hr. The soil moisture profile after the water infiltration was compared with that calculated from Youngs' equation. The results obtained are as follows: 1. Time required for infiltration rate to reach constant during rainfall was 15 to 25 min. The infiltration rate measured after 30 min was considered to be final infiltration rate. 2. The final infiltration rates of clay soils were lower than 10mm/hr., loamy soils 10 to 20., coarse loamy soils 20 to 30, and sandy soils higher than 30mm/hr., respectively. 3. The saturated hydraulic conductivity of the surface soil of Samgag sandy loam was 0.47mm/min., Songjeong clay loam0.16 mm/min., and Jeonnam silty clay loam 0.14mn/min., respectively. 4. The soil moisture profile calculated from Young's equation was in close agreement with measured in situ.

  • PDF

Estimation of the WGR Multi-dimensional Precipitation Model Parameters using the Genetic Algorithm (유전자 알고리즘을 이용한 WGR 다차원 강우모형의 매개변수 추정)

  • Jeong, Gwang-Sik;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.473-486
    • /
    • 2001
  • The WGR model was developed to represent meso-scale precipitation. As a conceptual model, this model shows a good link between atmospheric dynamics and statistical description of meso-scale precipitation(Waymire et al., 1984). However, as it has maximum 18 parameters along with its non-linear structure, its parameter estimation has been remained a difficult problem. There have been several cases of its parameter estimation for different fields using non-linear programming techniques(NLP), which were also difficult tasks to hamper its wide applications. In this study, we estimated the WGR model parameters of the Han river basin using the genetic algorithm(GA) and compared them to the NLP results(Yoo and Kwon, 2000). As a result of the study, we can find that the sum of square error from the GA provide more consistent parameters to the seasonal variation of rainfall. Also, we can find that the higher rainfall amount during summer season is closely related with the arrival rate of rain bands, not the rain cell intensity.

  • PDF