• 제목/요약/키워드: intensity of loading

검색결과 437건 처리시간 0.029초

미연혼합기의 난류특성과 화염 스케일에 관한 실험적 연구 (An experimental study on characteristics of mixture turbulence and flame scale)

  • 최병륜;장인갑;최경민
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1040-1049
    • /
    • 1996
  • The high loading combustion is accomplished by making the turbulent intensity strong and the scale small in the premixed combustor. The Da-mkoler number, which is decreased by short turbulent characteristic time or by long chemical reaction time, can make the distributed reaction flame. So we developed a doubled jet burner for high loading combustion. The doubled jet burner was designed to make the scale of the flame small by the effect of impingement and increasing shear stress with doubled jet. We investigated the turbulence characteristics of unburned mixture and visualized several flames with the typical schlieren photography. Then we studied the influence of several factors that related the scale of flame. Consequently, the doubled jet burner can make the eddy very small. And we can obtain the detail information of the flame scale through ADSF(the Average Distance between Successive Fringes) in the micro- schlieren photography. The ADSF is not a exact flame scale, but it has qualitative trend with increasing turbulent intensity. The ADSF is diminished remarkably with increasing turbulent intensity. The reason is that strong turbulent intensity makes the flame zone thick and flamelets numerous. We can confirm this fact by the signal analysis of ion currents.

영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산 (Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients)

  • 장창희;문호림;정일석;김태룡
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.

혼합모드하중상태에서 전파하는 피로크랙특성에 관한 연구 (Study on the Characteristics of Propagating Fatiguc Crack under Mixed-Mode Loading Condition)

  • 송삼홍;최진호;임진학
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.644-649
    • /
    • 1993
  • Practical structures are subject not only to tension but also to shear and torsional loading. In this study, the mode 1 and 2 stress intensity factors of specimens were calculated by using elastic finite element mothod. The stress fields at the crack tip subjected to mixed-mode loading were also studied by usingf eleatic finite element method and were compared with theoretical results. The three-point-bending, four-point-bending, and mixed-mode-loading experiment were carried out. And, crack propagation rate da/dN and crack growth direction were examined. Also, the elastic finite element method was applied to calculate the stress intensity factors of branch crack tip and we relate the stress intenity factor range of branch crack tip(the result of FEM) to crack propagation rate(the experimental result). The .DELTA. -da/dN relation corelated with that of mode 1.

  • PDF

MEAN LOAD EFFECT ON FATIGUE OF WELDED JOINTS USING STRUCTURAL STRESS AND FRACTURE MECHANICS APPROACH

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Nuclear Engineering and Technology
    • /
    • 제38권3호
    • /
    • pp.277-284
    • /
    • 2006
  • In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B&PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ${\Delta}K$ characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints.

논에서 강우크기에 따른 질소와 인산의 유출 (Runoff loading of nitrogen and phosphorus with rainfall intensity from a paddy field)

  • 조재영;한강완;최창현
    • 한국환경농학회지
    • /
    • 제18권2호
    • /
    • pp.140-147
    • /
    • 1999
  • 실제 농민들이 벼를 경작하는 상태에서 논에 시비된 비료성분 가운데 수계 환경에 영향을 미칠 수 있는 질소와 인산을 대상으로 강우크기에 따른 유출량과 유출특성에 대하여 조사하였다. 강우크기에 따른 질소와 인산의 유출특성 및 유출량을 비교한 결과, 동일한 강우크기 조건하에서도 질소와 인산의 유출량이 상당한 차이를 나타내고 있었다. 강우-유출 과정중 영양물질의 유출량은 강우크기가 절대적으로 영향을 미치겠지만 그 밖에 선행강우량 및 논물담수심과 같은 유출수문조건, 비료시비 및 영농여부, 비영농기간중 논토양 관리형태에 따라 유출량이 다르게 나타났다.

  • PDF

혼합모드 하중조건에서의 철도 차륜재의 피로균열 실험에 관한 연구 (Fatigue Crack Growth Rates of a Railway Wheel Steel under Mixed Mode Loading Conditions)

  • 김택영;이만석;유인동;김호경
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.8-13
    • /
    • 2013
  • Fatigue crack growth tests were conducted on urban railway wheel steel under mode I and mixed-mode conditions. Fatigue crack growth rates were evaluated in terms of equivalent stress intensity factor ranges, using both the extended and projected crack lengths. The equivalent stress intensity factor range with the growth rate results obtained under mode I loading conditions can be used to predict the crack growth rate under mixed-mode loading conditions. Extended crack length rather than projected crack length is appropriate for the prediction of the crack growth rate under the mixed-mode loading conditions.

피로균열진전에 따른 304 강의 음향방출 거동 (Acoustic emission behavior during fatigue crack propagation in 304 Stainless steel)

  • 오광환;정창규;양유창;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.213-219
    • /
    • 2003
  • Acoustic emission behavior during fatigue crack growth test was investigated under various loading condition. To describe the acoustic emission activity, counts rate (d/dn) was related with SIFR (stress intensity factor range, K). Results indicated that SIFR could be divided into two parts according to its relationship with counts rate. For $K<25_{MPa\sqrt{m}}$, counts rate was increased as the SIFR increased. However, for values greater than $25_{MPa\sqrt{m}}$ , decreasing behavior was shown. This behavior of counts rate corresponding SIFR was keeping the same trend regardless of load range or crack length. Acoustic emission response to the single overload was sudden drop and slow recovery in counts rate like crack growth retardation. Under variable loading condition, counts rate of each loading block was same as that of constant amplitude loading. Overall experimental data was somewhat scattered since sensitive characteristics of acoustic emission method. However, these empirical relations indicated that counts rate was uniquely correlate with single parameter, SIFR.

  • PDF

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Mat-묘(苗)의 리올러지 특성(特性) (Rheological Properties of Mat-type Seedlings)

  • 이정기;허윤근
    • Journal of Biosystems Engineering
    • /
    • 제14권1호
    • /
    • pp.8-15
    • /
    • 1989
  • Agricultural materials do not react in a purely elastic manner, and their responses when subjected to stress and strain are appeared from a combination of elastic and viscous behavior. Various researchers have studied the mechanical and rheological properties of the many agricultural materials, but those properties are available mostly foreign varieties of agricultural products. Rheological properties of rice seedlings become important to formulate the principles governing their mechanical behavior. The objectives of this study were to experimentally determine the stress relaxation properties of rice seedlings such as three Japonica-type and one Indica ${\times}$ Japonica hybrid in the transplanting age. The results of this study are summarized as follows; 1. The stress relaxation behavior could be described by the generalized Maxwell model. 2. The phenomenon of stress relaxation happened abruptly just after loading and this phenomenon weakened with the loading time lapsed. 3. With increase of the initial stress, the stress relaxation intensity and residual stress increased, while the relaxation time was constant with increased, while the relaxation time was constant with increase of the level of initial stress. 4. With increase of loading rate, the stress relaxation intensity increased, while the relaxation time and residual stress decreased.

  • PDF