• 제목/요약/키워드: intelligent video surveillance

검색결과 128건 처리시간 0.03초

지하철 역사내 무선 센서네트워크 환경구축을 위한 무선 스펙트럼 분석 및 전송시험에 관한 연구 (Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom)

  • 안태기;김갑영;양세현;최갑봉;심보석
    • 한국산학기술학회논문지
    • /
    • 제12권7호
    • /
    • pp.3220-3226
    • /
    • 2011
  • 지하철 역사에 화재, 테러 등의 내 외부 위험요인을 감시하기 위하여 CCTV와 각종 센서를 이용한 감시시스템이 구축되어 왔으며, 최근 최신의 IT기술인 센서네트워크기술을 이용한 감시시스템기술 도입이 여러 분야에서 시도되고 있다. 2007년부터 정부 주도하에 지하철 역사의 경우에도 최신의 IT기술인 무선 센서네트워크기술 및 지능 형영상감시기술 등과 접목하여 화재, 제한지역 침입, 승객 혼잡도, 우범지역, 역사 건전성 등을 종합적으로 감시하는 도시철도지능형종합감시시스템 개발 및 구축이 추진 중에 있다. 이를 위하여 본 연구에서는 개발 중인 도시철도 지능형 종합감시시스템의 현장 역사 적용에 앞서 무선센서네트워크의 대표라 할 수 있는 ZigBee기반의 현장 무선통신환경 시험을 서울지하철 충무로 역사에서 수행하였고, 본 논문에 충무로역사 내부 승강장 및 대합실에서의 ZigBee기반의 무선통신환경 시험결과를 정리, 분석하였다. 승강장 및 대합실의 무선 스펙트럼분석 결과 ZigBee기반의 센서네트워크의 주파수와 중첩되는 주파수는 없었으며 인접 주파수 또한 10MHz 이상 이격되어 주파수 간섭을 받지 않는 것으로 나타났다. ZigBee를 이용한 무선데이터 전송 시험 결과, 데이터 전송은 열차의 승강장 진출입시의 영향보다 승강장 혹은 대합실의 이용승객 수 및 유동량에 의한 멀티패스 페이딩(multi-path fading) 효과에 더 큰 영향을 받는 것으로 나타나, 역사에 지능형종합감시시스템 구축 시 이를 고려하여야 할 것으로 판단된다.

AI모델을 적용한 군 경계체계 지능화 방안 (A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model)

  • 한창희;구하림;박복기
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.57-64
    • /
    • 2023
  • 현재 진행되는 고령화 및 인구절벽으로 대표되는 인구구조적 문제는 한국군 경계임무에 심각한 도전이 되고 있다. 본 연구의 목적은 AI모델을 적용해 군 경계체계를 지능화하는 것이다. 본 연구를 통해 제4차 산업혁명과 그 핵심이 되는 인공지능 알고리즘의 의의가 경계근무 상황실 내에서의 단순작업을 기계화하여 작업효율을 극대화하는 것임을 실증한다. 하나의 완성된 시스템으로서 군경계체계를 개발하기 위해, 지능화·자동화된 군(軍) 경계체계라는 목표로부터 필요한 인공지능 기술인 다중 객체 추적(multi-object tracking, MOT) 기술을 선택한다. 또한 체계 사용자의 접근성 및 체계 이용의 효율성을 담보하기 위해서는 데이터 시각화(data visualization)와 사용자 인터페이스(user interface)를 꼽았다. 이 추가 요소를 결합하여 하나의 유기적인 소프트웨어 애플리케이션을 구성한다. CCTV 영상 데이터 수집한 장소는 00부대 제1정문 및 제2정문에 설치된 CCTV 카메라이며, 지통실의 협조 아래 영상 수집을 진행하였다. 실험결과를 통해 경계체계를 지능화·자동화시켜 더 많은 정보를 경계체계 운용인원에게 전달할 수 있음을 보였다. 그러 나 여전히 개발된 소프트웨어 경계체계 역시 한계점이 존재한다. 이를 설명하여 군 경계체계 개발의 향후 방향성을 제시한다.

지능형 IP 카메라를 이용한 CCTV 시스템에서의 실시간 개인 영상정보 보호 (RealTime Personal Video Image Protection on CCTV System using Intelligent IP Camera)

  • 황기진;박재표;양승민
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.120-125
    • /
    • 2016
  • 최근 테러와 사건 사고 같은 각종 위협으로부터 개인의 재산과 생명을 보호하기 위한 목적으로, 영상 보안 장비들이 많은 장소에 설치되어 운영되고 있다. 영상 보안 장비의 기술도 점진적으로 발전하여, 고품질 고해상도 기반의 제품도 많이 출시되고 있다. 하지만, 보안을 목적으로 만들어진 CCTV 장비가 오히려 개인의 프라이버시 침해를 유발하기도 한다. 본 논문에서는 지능형 IP 카메라의 메타데이터를 이용하여 개인 영상 정보 보호를 할 수 있는 방법에 대해 제안 한다. 메타 데이터로부터 분석된 개인 영상 정보를 마스킹 할 수 있도록 시스템을 설계하였으며 사용자 권한에 따른 영상 정보 접근 방법에 대한 정의, 메타데이터의 저장 방법과 녹화 데이터 검색 시 메타데이터를 활용하는 방법을 기술 하였다. 제안된 시스템을 행정자치부에서 제시한 "공공기관 영상정보 처리기기 설치 및 운영에 관한 가이드라인"에 맞춰 적합성 여부를 비교하였다. 지금까지의 단일 서버 제품에서는 하드웨어적인 성능의 한계와 기술적인 문제로 인해, 실시간으로 개인 영상 정보 보호기법을 적용할 수 있는 방법을 찾기 어려웠다. 본 논문에서 제안하는 방법을 적용한다면 행정자치부에서 제시한 가이드라인을 충족하면서, 서버 비용을 줄이고, 시스템 복잡도를 낮출 수 있는 시스템을 구성할 수 있다.

비디오에서 동체의 행위인지를 위한 효율적 학습 단위에 관한 연구 (A Study on Efficient Learning Units for Behavior-Recognition of People in Video)

  • 권익환;부베나 하제르;이도훈
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.196-204
    • /
    • 2017
  • Behavior of intelligent video surveillance system is recognized by analyzing the pattern of the object of interest by using the frame information of video inputted from the camera and analyzes the behavior. Detection of object's certain behaviors in the crowd has become a critical problem because in the event of terror strikes. Recognition of object's certain behaviors is an important but difficult problem in the area of computer vision. As the realization of big data utilizing machine learning, data mining techniques, the amount of video through the CCTV, Smart-phone and Drone's video has increased dramatically. In this paper, we propose a multiple-sliding window method to recognize the cumulative change as one piece in order to improve the accuracy of the recognition. The experimental results demonstrated the method was robust and efficient learning units in the classification of certain behaviors.

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

Egocentric Vision for Human Activity Recognition Using Deep Learning

  • Malika Douache;Badra Nawal Benmoussat
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.730-744
    • /
    • 2023
  • The topic of this paper is the recognition of human activities using egocentric vision, particularly captured by body-worn cameras, which could be helpful for video surveillance, automatic search and video indexing. This being the case, it could also be helpful in assistance to elderly and frail persons for revolutionizing and improving their lives. The process throws up the task of human activities recognition remaining problematic, because of the important variations, where it is realized through the use of an external device, similar to a robot, as a personal assistant. The inferred information is used both online to assist the person, and offline to support the personal assistant. With our proposed method being robust against the various factors of variability problem in action executions, the major purpose of this paper is to perform an efficient and simple recognition method from egocentric camera data only using convolutional neural network and deep learning. In terms of accuracy improvement, simulation results outperform the current state of the art by a significant margin of 61% when using egocentric camera data only, more than 44% when using egocentric camera and several stationary cameras data and more than 12% when using both inertial measurement unit (IMU) and egocentric camera data.

Human Posture Recognition: Methodology and Implementation

  • Htike, Kyaw Kyaw;Khalifa, Othman O.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1910-1914
    • /
    • 2015
  • Human posture recognition is an attractive and challenging topic in computer vision due to its promising applications in the areas of personal health care, environmental awareness, human-computer-interaction and surveillance systems. Human posture recognition in video sequences consists of two stages: the first stage is training and evaluation and the second is deployment. In the first stage, the system is trained and evaluated using datasets of human postures to ‘teach’ the system to classify human postures for any future inputs. When the training and evaluation process is deemed satisfactory as measured by recognition rates, the trained system is then deployed to recognize human postures in any input video sequence. Different classifiers were used in the training such as Multilayer Perceptron Feedforward Neural networks, Self-Organizing Maps, Fuzzy C Means and K Means. Results show that supervised learning classifiers tend to perform better than unsupervised classifiers for the case of human posture recognition.

철도역사 안전을 위한 비전기반 승강장 모니터링 시스템 (Vision based Monitoring System for Safety in Railway Station)

  • 오세찬;박성혁;이장무
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.953-958
    • /
    • 2007
  • Passenger safety is a primary concern of railway system but, it has been urgent issue that dozens of people are killed every year when they are fallen from train platforms. In this paper, we propose a vision based monitoring system for railway station platform. The system immediately perceives dangerous factors of passengers on the platform by using image processing technology. To monitor almost entire length of the track line in the platform, we use several video cameras. Each camera conducts surveillance its own preset monitoring area whether human or dangerous object was fallen in the area. Moreover, to deal with the accident immediately, the system provides local station, central control room employees and train driver with the video information about the accident situation including alarm message. This paper introduces the system overview and detection process with experimental results. According to the results, we expect the proposed system will play a key role for establishing highly intelligent monitoring system in railway.

  • PDF