• Title/Summary/Keyword: intelligent robot

검색결과 1,466건 처리시간 0.035초

Agent Mobility in Human Robot Interaction

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2771-2773
    • /
    • 2005
  • In network human-robot interaction, human can access services of a robot system through the network The communication is done by interacting with the distributed sensors via voice, gestures or by using user network access device such as computer, PDA. The service organization and exploration is very important for this distributed system. In this paper we propose a new agent-based framework to integrate partners of this distributed system together and help users to explore the service effectively without complicated configuration. Our system consists of several robots. users and distributed sensors. These partners are connected in a decentralized but centralized control system using agent-based technology. Several experiments are conducted successfully using our framework The experiments show that this framework is good in term of increasing the availability of the system, reducing the time users and robots needs to connect to the network at the same time. The framework also provides some coordination methods for the human robot interaction system.

  • PDF

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구 (A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion)

  • 노연 후 콩;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

센서 정보 처리 기능을 갖는 로보트 프로그램밍 언어에 관한 조사 (An Investigation of Robot Programming Language with the Capabilities of Sensory Information Processing)

  • 김대원;고명삼;이범희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.435-438
    • /
    • 1987
  • In this paper, among the robot programming languages that enable processing of sensory information, eight exemplary languages are chosen, and investigated in terms of their characteristics, why they are designed the way they are, and the kind of sensors each language can use and apply to. In addition, the characteristics of each language is compared with one another from the sensor point of view and the flow of each language is analyzed from the robot language classification point of view. Finally, We investigate the progress and the requirements of the sensor-based robot programming languages for further developments.

  • PDF

Towards a Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework

  • Ha, Young-Guk;Sohn, Joo-Chan;Cho, Young-Jo;Yoon, Hyun-Soo
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.666-676
    • /
    • 2005
  • In recent years, motivated by the emergence of ubiquitous computing technologies, a new class of networked robots, ubiquitous robots, has been introduced. The Ubiquitous Robotic Companion (URC) is our conceptual vision of ubiquitous service robots that provide users with the services they need, anytime and anywhere in ubiquitous computing environments. To realize the vision of URC, one of the essential requirements for robotic systems is to support ubiquity of services: that is, a robot service must be always available even though there are changes in the service environments. Specifically robotic systems need to be automatically interoperable with sensors and devices in current service environments, rather than statically preprogrammed for them. In this paper, the design and implementation of a semantic-based ubiquitous robotic space (SemanticURS) is presented. SemanticURS enables automated integration of networked robots into ubiquitous computing environments exploiting Semantic Web Services and AI-based planning technologies.

  • PDF

Neural Network Compensation for Impedance Force Controlled Robot Manipulators

  • Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.17-25
    • /
    • 2014
  • This paper presents the formulation of an impedance controller for regulating the contact force with the environment. To achieve an accurate force tracking control, uncertainties in both robot dynamics and the environment require to be addressed. As part of the framework of the proposed force tracking formulation, a neural network is introduced at the desired trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input trajectory leads to a remarkable structural advantage in that no modifications of the internal force controllers are required. Minimizing the objective function of the training signal for a neural network satisfies the desired force tracking performance. A neural network actually compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation results confirm the position and force tracking abilities of a robot manipulator.

대장 소장 원형문합수술을 위한 지능형 로봇개발 (Development of Intelligent Robot for Anastomosis of Intestine)

  • 권용민;홍정화
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.139-143
    • /
    • 2005
  • As increasing gastrointestinal pathologies, general and thoracic surgeries using circular staplers have been dramatically increased. Because of convenience for surgical procedure, recently, various circular staplers for anastomosis have been used widely. Since the circular staplers conventional have used the displacement control method, however, the anastomosis could have various biomechanical conditions. To do that, biomechanical system of gastrointestinal soft tissue should be examined to control the anastomotic condition. In this study, a new intelligent robot used in circular anastomosis. The intelligent robot driven by a stepper motor and controlled by a digital signal processor.

  • PDF

안드로이드 기반 스마트폰을 활용한 지능형 서비스 로봇 개발 (Development of Intelligent Service Robot using Smart Phone based on Android OS)

  • 문채영;류광기
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.4193-4199
    • /
    • 2012
  • 본 연구에서는 안드로이드 기반 스마트폰을 장착하여 지능형 로봇의 성능 구현이 가능하도록 스마트폰 애플리케이션과 로봇 플랫폼을 설계 및 구현하였다. 터치스크린, 사운드 입출력, 네트워크 그리고 각종 센서 기능을 갖고 있는 스마트폰을 전원부와 모터 등의 단순 기능을 갖는 로봇플랫폼에 접목시켜 원격제어, 홈오토메이션, 게임기, R-러닝 등의 기능을 수행할 수 있도록 구현하였다. 연구에 사용된 스마트폰은 블루투스 통신을 이용하여 로봇과 데이터를 송수신하며 원격지의 컴퓨터와는 WI-FI를 통해 인터넷으로 통신을 수행하도록 설계 하였다.

Behavior Learning of Swarm Robot System using Bluetooth Network

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권1호
    • /
    • pp.10-15
    • /
    • 2009
  • With the development of techniques, robots are getting smaller, and the number of robots needed for application is greater and greater. How to coordinate large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot Systems (SRS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the SRS, a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, it is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. And we will discuss how to construct and what kind of procedure to develop the communicating system for group behavior of the SRS under intelligent space.

센서기반 지능형 아크 용접 로봇 시스템의 동향 (Trends of Sensor-based Intelligent Arc Welding Robot System)

  • 정지훈;신현호;송영훈;김수종
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1051-1056
    • /
    • 2014
  • In this paper, we introduce an intelligent robotic arc welding system which exploits sensors like as LVS (Laser Vision Sensor), Hall effect sensor, voltmeter and so on. The use of industrial robot is saturated because of its own limitation, and one of the major limitations is that industrial robot cannot recognize the environment. Lately, sensor-based environmental awareness research of the industrial robot is performed actively to overcome such limitation, and it can expand application field and improve productivity. We classify the sensor-based intelligent arc welding robot system by the goal and the sensing data. The goals can be categorized into detection of a welding start point, tracking of a welding line and correction of a torch deformation. The Sensing data can be categorized into welding data (i.e. current, voltage and short circuit detection) and displacement data (i.e. distance, position). This paper covers not only the explanation of the each category but also its advantage and limitation.