• Title/Summary/Keyword: intelligent optimization algorithms

Search Result 176, Processing Time 0.028 seconds

Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization (다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.869-874
    • /
    • 2007
  • In searching for solutions to multiobjective optimization problem, we find that there is no single optimal solution but rather a set of solutions known as 'Pareto optimal set'. To find approximation of ideal pareto optimal set, search capability of diverse individuals at population space can determine the performance of evolutionary algorithms. This paper propose the method to maintain population diversify and to find non-dominated alternatives in Game model based Co-Evolutionary Algorithm.

Rank-based Control of Mutation Probability for Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.146-151
    • /
    • 2010
  • This paper proposes a rank-based control method of mutation probability for improving the performances of genetic algorithms (GAs). In order to improve the performances of GAs, GAs should not fall into premature convergence phenomena and should also be able to easily get out of the phenomena when GAs fall into the phenomena without destroying good individuals. For this, it is important to keep diversity of individuals and to keep good individuals. If a method for keeping diversity, however, is not elaborately devised, then good individuals are also destroyed. We should devise a method that keeps diversity of individuals and also keeps good individuals at the same time. To achieve these two objectives, we introduce a rank-based control method of mutation probability in this paper. We set high mutation probabilities to lowly ranked individuals not to fall into premature convergence phenomena by keeping diversity and low mutation probabilities to highly ranked individuals not to destroy good individuals. We experimented our method with typical four function optimization problems in order to measure the performances of our method. It was found from extensive experiments that the proposed rank-based control method could accelerate the GAs considerably.

DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem (효과적인 배낭 문제 해결을 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim Eun-Gyeong;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.730-735
    • /
    • 2005
  • Though Knapsack Problem appears to be simple, it is a NP-hard problem that is not solved in polynomial time as combinational optimization problems. To solve this problem, GA(Genetic Algorithms) was used in the past. However, there were difficulties in real experiments because the conventional method didn't reflect the precise characteristics of DNA. In this paper we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to solve problems of Knapsack Problem. ACO was applied to (0,1) Knapsack Problem; as a result, it reduced experimental errors as compared with conventional methods, and found accurate solutions more rapidly.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Optimization of IG_based Fuzzy Set Fuzzy Model by Means of Adaptive Hierarchical Fair Competition-based Genetic Algorithms (적응형 계층적 공정 경쟁 유전자 알고리즘을 이용한 정보입자 기반 퍼지집합 퍼지모델의 최적화)

  • Choe, Jeong-Nae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.366-369
    • /
    • 2006
  • 본 논문에서는 계층적 공정 경쟁 유전자 알고리즘을 통한 비선형시스템의 정보입자 기반 퍼지집합 퍼지집합 모델의 최적화 방법을 제안한다. 퍼지집합 모델은 주로 전문가의 경험에 기반을 두어 얻어지기 때문에 동정과 최적화 과정이 필요하며 GAs를 이용하여 퍼지모델을 최적화한 연구가 많이 있다. GAs는 전역 해를 찾을 수 있는 최적화 알고리즘으로 잘 알려져 있지만 조기 수렴 문제를 포함하고 있다. 병렬유전자 알고리즘(PGA)은 조기수렴를 더디게 하고 전역 해를 찾기 위한 진화알고리즘이다. 적응형 계층적 공정 경쟁기반 유전자 알고리즘(AHFCGA)을 이용하여 퍼지모델의 입력변수, 멤버쉽함수의 수, 멤버쉽함수의 정점 등의 전반부 구조와 파라미터를 동정하였고, LSE를 사용하여 후반부 파라미터를 동정하였으며 실험적 예제를 통하여 제안된 방법의 성능을 평가한다.

  • PDF

Solving Integer Programming Problems Using Genetic Algorithms

  • Anh Huy Pham Nguyen;Bich San Chu Tat;Triantaphyllou E
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.400-404
    • /
    • 2004
  • There are many methods to find solutions for Integer Programming problems (IPs) such as the Branch-Bound philosophy or the Cutting Plane algorithm. However, most of them have a problem that is the explosion of sets in the computing process. In addition, GA is known as a heuristic search algorithm for solutions of optimization problems. It is started from a random initial guess solution and attempting to find one that is the best under some criteria and conditions. The paper will study an artificial intelligent method to solve IPs by using Genetic Algorithms (GAs). The original solution of this was presented in the papers of Fabricio Olivetti de Francaand and Kimmo Nieminen [2003]. However, both have several limitations which causes could be operations in GAs. The paper proposes a method to upgrade these operations and computational results are also shown to support these upgrades.

  • PDF

Proportional-Integral-Derivative Evaluation for Enhancing Performance of Genetic Algorithms (유전자 알고리즘의 성능향상을 위한 비례-적분-미분 평가방법)

  • Jung, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.439-447
    • /
    • 2003
  • This paper proposes a proportional-integral-derivative (PID) evaluation method for enhancing performance of genetic algorithms. In PID evaluation, the fitness of individuals is evaluated by not only the fitness derived from an evaluation function, but also the parents fitness of each individual and the minimum and maximum fitness from initial generation to previous generation. This evaluation decreases the probability that the genetic algorithms fall into a premature convergence phenomenon and results in enhancing the performance of genetic algorithms. We experimented our evaluation method with typical numerical function optimization problems. It was found from extensive experiments that out evaluation method can increase the performance of genetic algorithms greatly. This evaluation method can be easily applied to the other types of genetic algorithms for improving their performance.

Designing New Algorithms Using Genetic Programming

  • Kim, Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.171-178
    • /
    • 2004
  • This study suggests a general paradigm enhancing genetic mutability. Mutability among heterogeneous members in a genetic population has been a major problem in application of genetic programming to diverse business problems. This suggested paradigm is implemented to developing new methods from existing methods. Within the evolutionary approach taken to designing new methods, a general representation scheme of the genetic programming framework, called a kernel, is introduced. The kernel is derived from the literature of algorithms and heuristics for combinatorial optimization problems. The commonality and differences among these methods have been identified and again combined by following the genetic inheritance merging them. The kernel was tested for selected methods in combinatorial optimization. It not only duplicates the methods in the literature, it also confirms that each of the possible solutions from the genetic mutation is in a valid form, a running program. This evolutionary method suggests diverse hybrid methods in the form of complete programs through evolutionary processes. It finally summarizes its findings from genetic simulation with insight.

  • PDF

Reliability Optimization Problems using Adaptive Hybrid Genetic Algorithms

  • Minoru Mukuda;Yun, Young-Su;Mitsuo Gen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes an adaptive hybrid genetic algorithm (aHGA) for effectively solving the complex reliability optimization problems. The proposed aHGA uses a loca1 search technique and an adaptive scheme for respectively constructing hybrid algorithm and adaptive ability. For more various comparisons with the proposed adaptive algorithm, other aHGAs with conventional adaptive schemes are considered. These aHGAs are tested and analyzed using two complex reliability optimization problems. Numerical result shows that the proposed aHGA outperforms the other competing aHGAs.

  • PDF