상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.
최근 빅데이터 분석 수요의 지속적 증가와 함께 관련 기법 및 도구의 비약적 발전이 이루어지고 있으며, 이에 따라 빅데이터 분석은 소수 전문가에 의한 독점이 아닌 개별 사용자의 자가 수행 형태로 변모하고 있다. 또한 전통적 방법으로는 분석이 어려웠던 비정형 데이터의 활용 방안에 대한 관심이 증가하고 있으며, 대표적으로 방대한 양의 텍스트에서 주제를 도출해내는 토픽 모델링(Topic Modeling)에 대한 연구가 활발히 진행되고 있다. 전통적인 토픽 모델링은 전체 문서에 걸친 주요 용어의 분포에 기반을 두고 수행되기 때문에, 각 문서의 토픽 식별에는 전체 문서에 대한 일괄 분석이 필요하다. 이로 인해 대용량 문서의 토픽 모델링에는 오랜 시간이 소요되며, 이 문제는 특히 분석 대상 문서가 복수의 시스템 또는 지역에 분산 저장되어 있는 경우 더욱 크게 작용한다. 따라서 이를 극복하기 위해 대량의 문서를 하위 군집으로 분할하고, 각 군집별 분석을 통해 토픽을 도출하는 방법을 생각할 수 있다. 하지만 이 경우 각 군집에서 도출한 지역 토픽은 전체 문서로부터 도출한 전역 토픽과 상이하게 나타나므로, 각 문서와 전역 토픽의 대응 관계를 식별할 수 없다. 따라서 본 연구에서는 전체 문서를 하위 군집으로 분할하고, 각 하위 군집에서 대표 문서를 추출하여 축소된 전역 문서 집합을 구성하고, 대표 문서를 매개로 하위 군집에서 도출한 지역 토픽으로부터 전역 토픽의 성분을 도출하는 방안을 제시한다. 또한 뉴스 기사 24,000건에 대한 실험을 통해 제안 방법론의 실무 적용 가능성을 평가하였으며, 이와 함께 제안 방법론에 따른 분할 정복(Divide and Conquer) 방식과 전체 문서에 대한 일괄 수행 방식의 토픽 분석 결과를 비교하였다.
최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.
Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.
다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.
인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.
기술경쟁이 심화되고 있는 오늘날 신기술에 대한 선도적 위치의 선점이 중요하다. 선도적 위치의 선점과 적정시점에 기술 획득·관리를 위해 이해관계자들은 지속적으로 기술에 대한 탐색활동을 수행한다. 이를 위한 참고 자료로서 가트너 하이프 사이클(Gartner Hype Cycle)은 중요한 의미가 있다. 하이프 사이클은 기술수명주기(S-curve)와 하이프 수준(Hype Level)을 결합하여 새로운 기술에 대한 대중의 기대감을 시간의 흐름에 따라 나타낸 그래프이다. 새로운 기술에 대한 기대는 기술사업화뿐만 아니라 연구개발 투자의 정당성, 투자유치를 위한 기회의 발판이 된다는 점에서 연구개발 담당자 및 기술투자자의 관심이 높다. 그러나 산업계의 높은 관심에 비해 실증분석을 시도한 선행연구는 다양하지 못하다. 선행문헌 분석결과 데이터 종류(뉴스, 논문, 주가지수, 검색 트래픽 등)나 분석방법은 한정적이었다. 이에 본 연구에서는 확산의 주요한 채널이 되어가고 있는 소셜네트워크서비스의 데이터를 활용하여 'Gartner Hype Cycle for Artificial Intelligence, 2021'의 단계별 기술들에 대한 집단구조(커뮤니티)의 특성과 커뮤니티 간 정보 확산패턴을 분석하고자 한다. 이를 위해 컴포넌트 응집규모(Component Cohesion Size)를 통해 각 단계별 구조적 특성과 연결중심화(Degree Centralization)와 밀도(Density)를 통해 확산의 방식을 확인하였다. 연구결과 기술을 수용하는 단계별 집단들의 커뮤니케이션 활동이 시간이 지날 수록 분절이 커지며 밀도 역시 감소함을 확인하였다. 또한 새로운 기술에 대한 관심을 촉발하는 혁신태동기 집단의 경우 정보확산을 촉발하는 외향연결(Out-degree) 중심화 지수가 높았으며, 이후의 단계는 정보를 수용하는 내향연결(In-degree) 중심화 지수가 높은 것으로 나타났다. 해당 연구를 통해 하이프 사이클에 관한 이론적 기초를 제공할 것이다. 또한 인공지능기술에 대한 기술관심집단들의 기대감을 반영한 정보확산의 특성과 패턴을 소셜데이터를 통해 분석함으로써 기업의 기술투자 의사결정에 새로운 시각을 제공할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.