• 제목/요약/키워드: intelligent news system

검색결과 87건 처리시간 0.021초

소셜 미디어 상에서의 인공지능 관련 사회적 여론에 대한 다 범주 감성 분석 (Multi-Category Sentiment Analysis for Social Opinion Related to Artificial Intelligence on Social Media)

  • 이상원;최창욱;김동성;여운영;김종우
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.51-66
    • /
    • 2018
  • 인공지능 기술의 비약적인 발전으로 인하여, 사용자의 편의성 증대를 목적으로 다양한 분야에서 관련된 제품과 서비스들의 개발이 이루어지고 있다. 이러한 기술의 발전에는 긍정적인 파급 효과에 대한 기대감이 존재하나, 향후 발생 가능한 부정적인 측면에 대한 논의도 활발히 이루어지고 있다. 예를 들어, 인공지능 기술 기반의 자율주행 자동차의 경우 안정성의 향상이라는 측면에서 많은 관심을 받고 있으나, 트롤리 딜레마, 시스템 보안 문제 등의 사회적 이슈 또한 활발히 논의되고 있다. 이에 따라, 인공지능 관련 기술의 발전과 사회적 수용을 위해서는 사회적으로 논의되는 주요 관련 이슈들에 대한 확인과 효과적인 분석이 요구된다. 이를 위해, 본 연구에서는 '이세돌 vs 알파고' 시점인 2016년 3월을 포함하여 2016년 1월부터 2017년 12월까지 2년 동안의 인공지능과 관련된 사회적인 이슈들을 파악하고 온라인상에서 발생되는 사회적 여론에 대하여 다 범주 감성을 분석하고자 한다. 이를 위하여 국내 대표적인 포털 사이트에서 인공지능 관련 뉴스의 수와 관련된 뉴스 제목, 뉴스의 댓글을 웹 크롤링(Web Crawling) 하였다. 사회적 여론에 대한 다 범주 감성 분석은 논의되는 이슈들의 중요성을 고려하여 단순 긍정 또는 부정이 아닌, 분노, 혐오, 두려움, 행복, 중립, 슬픔, 놀라움의 7가지 다 범주 감성으로 분석하였다. 분석 결과, 대부분의 이벤트 기간에 대하여 1위 감성은 '행복'으로 나타났지만 각 키워드에 대하여 나오는 감성이 상이함을 볼 수 있었다. 또한 2016년 상반기, 하반기, 2017년 상반기, 하반기로 나누어 보았을 때 시간이 지남에 따라 '분노'의 감성이 낮아짐을 확인하였다. 이러한 분석 결과를 바탕으로 인공지능과 관련하여 현재 논의되고 있는 다양한 이슈와 동향 파악이 가능하며, 이에 대한 대응 방안 마련에 활용이 가능할 것이다. 향후 감성 분석기의 성능 향상과 댓글에 대한 공감 및 비공감도의 가중치를 추가하여 분석한다면 사회적 여론을 보다 세밀하게 파악 할 수 있을 것이다.

온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측 (Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news)

  • 정지선;김동성;김종우
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.37-51
    • /
    • 2015
  • 인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.

텍스트 분석을 통한 이종 매체 카테고리 다중 매핑 방법론 (Mapping Categories of Heterogeneous Sources Using Text Analytics)

  • 김다솜;김남규
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.193-215
    • /
    • 2016
  • 최근 다양한 소셜 네트워크 서비스의 증가로 인해 사용자들은 각자의 목적 및 취향에 따라 여러 매체를 동시에 이용하는 경향을 보이고 있다. 또한 특정 주제에 대한 정보를 수집할 때에도 소셜 네트워크 서비스, 인터넷 뉴스, 블로그 등 여러 매체를 동시에 활용하는 것이 일반적이다. 하지만 다양한 매체를 통해 유통되는 문서들은 서로 유사한 주제, 심지어는 동일한 내용을 다루더라도 각 매체 별 정책 및 기준에 따라 각기 다른 카테고리로 관리되고 있으며, 이는 이종 매체를 아우르는 범위에서 특정 카테고리에 대한 탐색을 수행하고자 하는 시도에 걸림돌로 작용하고 있다. 이러한 제약을 극복하기 위해, 본 연구에서는 기존 매체 고유의 카테고리 체계는 그대로 유지하면서 이종 매체 간 카테고리 매핑을 수행하는 방법을 제시한다. 즉, 개별 문서를 다양한 매체의 관점에서 재분류하고 이러한 결과를 문서에 2차원 레이블로 저장함으로써, 이종 매체에 속한 다양한 문서들을 마치한 매체에 속한 것과 같이 동일한 카테고리 기준으로 탐색할 수 있는 논리적 장치를 제안한다. 본 논문에서는 국내 인터넷 뉴스 포털 사이트 두 곳의 뉴스 기사 6,000건에 대해 제안 방법론을 적용한 실험을 통해 각 기사에 매체와 카테고리 정보로 구성된 2차원 레이블을 부여하였으며, 매체 간, 지도 학습과 준지도 학습 간, 동질 학습 데이터와 이질학습 데이터 간의 정확도 비교 실험을 수행하였다. 특히 매우 흥미롭게도, 일부 카테고리에서 이질 학습 데이터를 사용한 준지도 학습의 분류 정확도가 지도 학습 및 동질 학습 데이터를 사용한 준지도 학습의 분류 정확도보다 높게 나타나는 현상을 발견하였다.

매체와 정보유형에 따른 정보확산 차이에 대한 연구 (A Study on the Differences of Information Diffusion Based on the Type of Media and Information)

  • 이상근;김진화;백헌;이의방
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.133-146
    • /
    • 2013
  • 본 연구는 매체에 따른 정보확산차이와, 정보유형을 근접성의 정도로 분류하여 정보확산차이를 보고자 하였다. 이는 기존의 전통매체인 종이신문이나 TV, 라디오와 같이 일방적으로 전달되는 매체의 정보확산과는 달리, 온라인 뉴스나 소셜네트워크서비스와 같이 쌍방향적 소통이 가능한 매체 특성으로 인한 정보확산은 차이가 있을 것이라 판단하였다. 따라서 본 연구에서는 개인이 직접 기사를 올리고 다른 사람들과 공유할 수 있는 블로그(Blog) 매체와 온라인 뉴스(News) 매체에 따른 정보확산차이를 비교해 보고자 하였다. 또한 심리적, 지리적 근접성에 따른 정보확산차이를 보고자 정보의 유형을 세분화 하였다. 이는 수용자가 정보의 근접성이 높고 낮음의 차이 정도에 따라 정보유형에 따른 가치평가의 기준이 다를 것이라 보았다. 정보유형은 연예, 시사(국제), 제품으로 선정하였고, 세부내용은 연예와 관련된 '싸이 젠틀맨', 시사와 관련된 '중국 쓰촨성 지진', 제품과 관련된 '갤럭시 S4'를 선택하였다. 본 연구의 분석방법은 Bass 확산모형을 이용하여 증명하고자 하였다. Bass 확산모형은 혁신효과(Innovation effect)와 모방효과(Imitation effect)로 나눠서 측정한다. 혁신효과는 서비스 초기에 영향을 미치는 변수로 추정가능하며, 모방효과는 서비스 초기 단계 이후에 영향을 미치는 변수로 구전의 영향을 받는다고 볼 수 있다. 본 연구 결과 첫째, 매체에 따른 정보확산 흐름은 비슷하게 나타났다. 비록 두 매체의 특성에 차이점이 있을지라도, 뉴스가치 중 하나인 근접성에 따른 정보확산은 비슷한 형태를 보인다고 할 수 있다. 두 번째, 근접성에 기반한 정보유형별 정보확산에는 차이가 있었다. 수용자 입장에서 관련성이 높은 제품과 연예는 모방효과가 높게 나타났으며, 시사의 경우는 모방효과보다 혁신효과가 높게 나타났다. 이는 제품관련 정보나 연예관련 정보와 같이 개인에게 심리적으로나 지리적으로 근접성이 높은 정보는, 국제 재해와 관련된 시사정보와 같이 근접성이 낮은 정보에 비해서, 개인의 모방효과가 활발히 진행된다고 볼 수 있다. 연구결과를 통해 매체와 정보유형에 따라 정보확산 흐름변화를 고찰하여 실무에 활용한다면 도움이 될 것이라 본다. 하지만, 정보유형을 각각 하나의 기사만을 택하여 보았기 때문에 이 결과를 통한 정보확산 차이라고 규정짓기에는 sample size가 너무 작아 일반화에 어려움이 있다. 향후 연구에서는 소셜미디어 종류를 블로그 뿐 만 아니라 다양한 소셜미디어를 추가하여 비교해 볼 필요가 있을 것이다. 또한 정보의 유형을 근접성 측면뿐 만 아니라 다른 측면도 고려해 봐야 할 것이다.

텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축 (Construction of Event Networks from Large News Data Using Text Mining Techniques)

  • 이민철;김혜진
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.183-203
    • /
    • 2018
  • 전통적으로 신문 매체는 국내외에서 발생하는 사건들을 살피는 데에 가장 적합한 매체이다. 최근에는 정보통신 기술의 발달로 온라인 뉴스 매체가 다양하게 등장하면서 주변에서 일어나는 사건들에 대한 보도가 크게 증가하였고, 이것은 독자들에게 많은 양의 정보를 보다 빠르고 편리하게 접할 기회를 제공함과 동시에 감당할 수 없는 많은 양의 정보소비라는 문제점도 제공하고 있다. 본 연구에서는 방대한 양의 뉴스기사로부터 데이터를 추출하여 주요 사건을 감지하고, 사건들 간의 관련성을 판단하여 사건 네트워크를 구축함으로써 독자들에게 현시적이고 요약적인 사건정보를 제공하는 기법을 제안하는 것을 목적으로 한다. 이를 위해 2016년 3월에서 2017년 3월까지의 한국 정치 및 사회 기사를 수집하였고, 전처리과정에서 NPMI와 Word2Vec 기법을 활용하여 고유명사 및 합성명사와 이형동의어 추출의 정확성을 높였다. 그리고 LDA 토픽 모델링을 실시하여 날짜별로 주제 분포를 계산하고 주제 분포의 최고점을 찾아 사건을 탐지하는 데 사용하였다. 또한 사건 네트워크를 구축하기 위해 탐지된 사건들 간의 관련성을 측정을 위하여 두 사건이 같은 뉴스 기사에 동시에 등장할수록 서로 더 연관이 있을 것이라는 가정을 바탕으로 코사인 유사도를 확장하여 관련성 점수를 계산하는데 사용하였다. 최종적으로 각 사건은 각의 정점으로, 그리고 사건 간의 관련성 점수는 정점들을 잇는 간선으로 설정하여 사건 네트워크를 구축하였다. 본 연구에서 제시한 사건 네트워크는 1년간 한국에서 발생했던 정치 및 사회 분야의 주요 사건들이 시간 순으로 정렬되었고, 이와 동시에 특정 사건이 어떤 사건과 관련이 있는지 파악하는데 도움을 주었다. 또한 일련의 사건들의 시발점이 되는 사건이 무엇이었는가도 확인이 가능하였다. 본 연구는 텍스트 전처리 과정에서 다양한 텍스트 마이닝 기법과 새로이 주목받고 있는 Word2vec 기법을 적용하여 봄으로써 기존의 한글 텍스트 분석에서 어려움을 겪고 있었던 고유명사 및 합성명사 추출과 이형동의어의 정확도를 높였다는 것에서 학문적 의의를 찾을 수 있다. 그리고, LDA 토픽 모델링을 활용하기에 방대한 양의 데이터를 쉽게 분석 가능하다는 것과 기존의 사건 탐지에서는 파악하기 어려웠던 사건 간 관련성을 주제 동시출현을 통해 파악할 수 있다는 점에서 기존의 사건 탐지 방법과 차별화된다.

Raspberry Pi를 이용한 스마트 미러 개발 (Development of Smart Mirror System based on the Raspberry Pi)

  • 린즈밍;김철원
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.379-384
    • /
    • 2021
  • 사람들이 인공 지능 분야를 계속 연구하고 제안 한다. 그 때문에 상대적으로 성숙한 인공지능 기술이 일상생활에 더 많이 활용된다. 평소 어디서나 볼 수 있는 생활용품들이 지능화되기 시작하고 있다. 그러나 미러는 생활용품에서 가장 많이 쓰이는 용품 이다. 그 인공 지능 기술을 미러에 적용하는 데 가장 적합 하다. 이 논문의 연구 결과는 라즈베리 pi를 기반으로 설계된 스마트 미러가 날씨, 온도, 인사를 표시하고, 인간-미러 상호작용 기능을 가지고 있다. 본 논문 연구방법은 라즈베리 pi 3B +를 핵심 컨트롤러로 사용하고 Google 어시스턴트를 지능형 제어로 사용한다. 라즈베리 pi의 자체 WiFi를 통해 네트워크에 연결하면 미러가 자동으로 시간, 날씨 및 뉴스 정보 기능을 표시하고 업데이트 할 수 있다. 키워드를 사용하여 Google 어시스턴트를 깨운 다음 미러를 제어하여 음악을 재생하고 시간을 상기시키는 등의 작업을 할 수 있다. 스마트 미러 음성 상호 작용의 기능을 실현한다. 또한 이 연구에 사용 된 하드웨어는 모두 모듈식 어셈블리이고, 나중에 사용자가 직접 조립하는 것이 편리 하며. 저렴한 가격으로 시장 진흥에 적합하다.

미술품 거래정보 온라인 제공시스템 구축을 위한 정보전략계획 (A Study on the Information Strategy Planing for the Construction of the Online Information System for the Transaction of Art)

  • 서병민
    • 디지털융복합연구
    • /
    • 제17권11호
    • /
    • pp.61-70
    • /
    • 2019
  • 사회경제적 발전과 교육부의 창의인성교육의 강화와 함께 일반국민도 미술품에 대한 향유문화가 고조되고 있고, 미술품이 투자대체제로써의 관심이 증대되고 있는 흐름 속에 미술품 시장의 산업화가 확대되고 있다. 최근 정부에서도 미술진흥 중장기 계획 수립을 발표하는 등 미술품 시장 활성화를 위한 정책적 의지를 나타내고 있다. 4차산업혁명 시대의 도래로 인공지능(AI), 가상현실(VR), 빅데이터 등 지능정보기술과 융 복합하는 현대미술 콘텐츠가 선보이고 있고, 인문학 및 창의융합에 대한 사회적 관심도 고조되고 있다. 이에 따라 누구나 쉽게 미술시장 정보에 접근할 수 있게 하고, 작가와 가격대별 검색기능과 분석자료, 비평 등 통합정보를 제공하는 등 미술시장의 투명화와 활성화 전략의 수립이 필요하다. 본 논문은 미술시장 경매거래정보 제공, 미술시장 보고서 및 뉴스 제공, 홍보 플랫폼 제공, 미술시장 분석서비스 및 회원관계관리 서비스를 제공하는 미술품 거래정보 온라인 제공시스템 구축을 위한 정보시스템계획을 수립하였다. 이를 위해 미술시장에 대한 환경분석과 중점분석을 통해 미래모델을 수립하였으며, 이에 따른 전략과제와 이행계획도 수립하였다.

단일 카테고리 문서의 다중 카테고리 자동확장 방법론 (A Methodology for Automatic Multi-Categorization of Single-Categorized Documents)

  • 홍진성;김남규;이상원
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.77-92
    • /
    • 2014
  • 텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총 24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.

텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰 (An Investigation on the Periodical Transition of News related to North Korea using Text Mining)

  • 박철수
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.63-88
    • /
    • 2019
  • 북한의 변화와 동향 파악에 대한 연구는 북한관련 정책에 대한 방향을 결정하고 북한의 행위를 예측하여 사전에 대응 할 수 있다는 측면에서 매우 중요하다. 현재까지 북한 동향에 대한 연구는 전문가를 중심으로 과거 사례를 서술적으로 분석하여, 향후에 북한의 동향을 분석하고 대응하여 왔다. 이런 전문가 서술 중심의 북한 변화 및 동향 연구에서 비정형데이터를 이용한 텍스트마이닝 분석이 더해지면 보다 과학적인 북한 동향 분석이 가능할 것이다. 특히 북한의 동향 파악과 북한의 대남 관련 행위와 연관된 연구는 통일 및 국방 분야에서 매우 유용하며 필요한 분야이다. 본 연구에서는 북한의 신문 기사 내용을 활용한 텍스트마이닝 방법으로 북한과 관련한 핵심 단어를 구축하였다. 그리고 본 연구는 김정은 집권 이후 최근의 남북관계의 극적인 관계와 변화들을 기반으로 세 개의 기간을 나누고 이 기간 내에 국내 언론에 나타난 북한과 관련성이 높은 단어들을 시계열적으로 분석한 연구이다. 북한과 관련한 주요 단어들을 세 개의 기간별로 분류하고 당시에 북한의 태도와 동향에 따라 해당 단어와 주제들의 관련성이 어떻게 변화하였는지를 파악하였다. 본 연구는 텍스트마이닝을 이용한 연구가 남북관계 및 북한의 동향을 이해하고 분석하는 방법론으로서 얼마나 유용한 것이지를 파악하는 것이었다. 앞으로 북한의 동향 분석에 대한 연구는 물론 대북관계 및 정책에 대한 방향을 결정하고, 북한의 행위를 사전에 예측하여 대응 할 수 있는 북한 리스크 측정 모델 구축을 위한 연구로 진행 될 것이다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).