• 제목/요약/키워드: intelligent news system

검색결과 87건 처리시간 0.021초

Stock and News Application of Intelligent Agent System

  • Kim, Dae-Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.239-243
    • /
    • 2003
  • Recently, there has been active research conducted on the intelligent agent in various fields. The results have been widely applied to intelligent user-friendly interfaces. In this system, we modeled, designed, and implemented an intelligent agent system that can be applied to stock and news. Some procedures such as login sequence to the web site, process to get stock information, setting stock in concern, intelligent news system module, news analysis module, and news learning module are modeled in detail and described in block diagram level. In our experiment on stock system, it showed quite a useful alarming screen avatar result and also on news system. it successfully rearranged the order of the news according to the user's preferences.

지능형 에이전트를 이용한 개인화된 유.무선 뉴스 검색 시스템 (Personalized Wire and Wireless News Retrieval System Using Intelligent Agent)

  • 한선미;우진운
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.609-616
    • /
    • 2001
  • 오늘날 인터넷이 보편화되면서 정보 검색 및 뉴스 검색들이 일반화되고 있지만 엄청난 정보의 양과 다양성 등으로 인해 사용자들은 오히려 정보 검색의 어려움을 호소하고 있다. 이에 본 논문에서는 사용자 편의의 뉴스 검색과 사용자의 요구와 취향이 반영될 수 있도록 BPN(Back Propagation Neural Network)의 학습 기능을 가진 지능형 에이전트를 이용하여 뉴스 기사를 필터링하는 뉴스 검색 시스템을 제안한다. 이 시스템은 여러 신문사의 기사를 수집 및 통합하여 그 날의 주요 기사들을 데이터베이스에 저장하는 수집 에이전트, 사용자가 입력한 키워드를 이용하여 BPN 기법으로 학습시키는 학습 에이전트 등으로 구성되어 있다. 또한 정보 통신 기술의 눈부신 발달로 무선 인터넷이 급속히 보급되는 현실을 감안하여 무선으로도 이러한 서비스를 제공할 수 있도록 시스템을 구성하였다.

  • PDF

Retrieval of Broadcast News Using Audio Content Analysis

  • Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권3E호
    • /
    • pp.74-79
    • /
    • 2007
  • In this paper, we report our recent work on a indexing and retrieval system of broadcast news using audio content analysis. Key issues addressed in this work are two major parts of the audio indexing system: anchorperson detection based on audio segmentation, and phone-based spoken document retrieval, developed in the framework of the emerging MPEG-7 standard. Experiments are conducted on a database of Britisch broadcast news videos. We discuss the development of the retrieval system, and the evaluation of each part and the retrieval system.

A New Anchor Shot Detection System for News Video Indexing

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.217-220
    • /
    • 2007
  • In this paper, we present a new anchor shot detection system which is a core step of the preprocessing process for the news video analysis. The proposed system is composed of four modules and operates sequentially: 1) skin color detection module for reducing the candidate face regions; 2) face detection module for finding the key-frames with a facial data; 3) vector representation module for the key-frame images using a non-negative matrix factorization; 4) anchor shot detection module using a support vector data description. According to our computer experiments, the proposed system shows not only the comparable accuracy to the recent other results, but also more faster detection rate than others.

  • PDF

A New Anchor Shot Detection System for News Video Indexing

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.133-138
    • /
    • 2008
  • In this paper, we propose a novel anchor shot detection system, named to MASD (Multi-phase Anchor Shot Detection), which is a core step of the preprocessing process for the news video analysis. The proposed system is composed of four modules and operates sequentially: 1) skin color detection module for reducing the candidate face regions; 2) face detection module for finding the key-frames with a facial data; 3) vector representation module for the key-frame images using a non-negative matrix factorization; 4) one class SVM module for determining the anchor shots using a support vector data description. Besides the qualitative analysis, our experiments validate that the proposed system shows not only the comparable accuracy to the recently developed methods, but also more faster detection rate than those of others.

그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교 (A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks)

  • 정이태;안현철
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.197-216
    • /
    • 2022
  • 인터넷 및 모바일 기술의 발달과 소셜미디어의 확산으로 인해 다량의 정보들이 온라인 상에서 생성, 유통되고 있다. 이중에는 대중에게 도움이 되는 유익한 정보들도 있지만, 역기능을 하는 이른바 가짜뉴스들도 함께 유통되고 있다. 지난 2020년 코로나19의 전세계적인 확산 이후, 온라인 상에는 이와 관련한 수많은 가짜뉴스들이 유통되었다. 다른 가짜뉴스들과 달리 코로나19와 관련된 가짜뉴스는 사람들의 건강, 나아가 생명까지 위협할 수 있다는 점에서 그 심각성이 매우 크다고 할 수 있다. 때문에 코로나19와 관련한 가짜뉴스를 자동으로 탐지하고, 이를 예방하는 지능형 기술은 사회적 건강도를 제고하는데 매우 의미 있는 연구주제라 할 수 있다. 이러한 배경에서 본 연구에서는 코로나19 관련 가짜뉴스 탐지를 효과적으로 수행하기 위해 그래프 임베딩 방법 중 하나인 Graph2vec을 활용한 방법을 제안한다. 가짜뉴스 탐지에 대한 주류 방법은 뉴스 콘텐츠 기반 즉, 텍스트에 대한 특징 분석으로 진행되었으나 본 연구에서는 사회적 참여 네트워크 내에서의 정보 전달 관계를 추가로 활용함으로써 보다 효과적으로 코로나19와 관련된 가짜뉴스를 탐지할 수 있었으며 성능 측면에서 정확도 향상을 확인할 수 있었다.

사용자 프로파일에 기초한 유즈넷 뉴스그룹 자동 결정 방법 (Automatic Determination of Usenet News Groups from User Profile)

  • 김종완;조규철;김희재;김병만
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.142-149
    • /
    • 2004
  • 많은 양의 유즈넷 뉴스 중에서 사용자가 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 그러나 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 하지만, 초보자인 경우는 어떤 뉴스그룹이 자신의 관심사와 관련이 있는지를 판단하기가 용이치 않다. 따라서, 본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제공한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 많은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지 (COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech)

  • 김지혁;안현철
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.267-283
    • /
    • 2023
  • 2019년 12월부터 현재까지 지속되고 있는 코로나19 팬데믹으로 인해 대중들은 감염병 대응을 위한 정보를 필요로 하게 되었다. 하지만 소셜미디어에서 유포되는 코로나19 관련 가짜뉴스로 인해 대중들의 건강이 심각하게 위협받고 있다. 특히 코로나19와 관련된 가짜뉴스가 유사한 내용으로 대량 유포될 경우 사실인지 거짓인지 진위를 가리기 위한 검증에 소요되는 시간이 길어지게 되어 우리 사회의 전반에 심각한 위협이 될 수 있다. 이에 학계에서는 신속하게 코로나19 관련 가짜뉴스를 탐지할 수 있는 지능형 모델에 대한 연구를 활발하게 수행해 오고 있으나, 대부분의 기존 연구에 사용된 데이터는 영문으로 구성되어 있어 한국어 가짜뉴스 탐지에 대한 연구는 매우 드문 실정이다. 이에 본 연구에서는 소셜 미디어 상에서 유포되는 한국어로 작성된 코로나19 관련 가짜뉴스 데이터를 직접 수집하고, 이를 기반으로 한 지능형 가짜뉴스 탐지 모델을 제안한다. 본 연구의 제안모델은 언어학적 특성 중 하나인 품사별 빈도 정보를 추가적으로 활용하여, 기존 연구에서 주로 사용되어 온 문서 임베딩 기법인 Doc2Vec 기반 가짜뉴스 탐지 모델의 예측 성능을 제고하고자 하였다. 실증분석 결과, 제안 모델이 비교 모델에 비해 Recall 및 F1 점수가 높아져 코로나19 관련 한국어 가짜뉴스를 보다 정확하게 판별함을 확인하였다.

독자에게 적응하는 신문기사 추천 시스템 (An Adaptable News Item Recommendation System to a Reader)

  • 최영삼;손영선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.431-434
    • /
    • 2002
  • 본 논문에서는 온라인 신문을 보는 사용자의 취향을 평가하고 취향에 맞는 인터페이스를 추천하는 시스템을 제안한다 신문사, 분류, 키워드 등의 평가요소에 대한 사용자 데이터의 중요도를 이용해 퍼지 측도$\square$적분으로 취향을 평가하여 해당되는 인터페이스를 제공한다. 또한 추천 받은 인터페이스에 대한 사용자의 만족도를 요소의 선택 빈도와 기사 읽은 시간 그리고 읽은 기사의 수로부터 추론하여 평가하고, 추론된 만족도에 의해 중요도를 변경시킴으로써 변화하는 사용자의 취향에 적응하는 시스템을 제안한다.

인터넷 뉴스 빅데이터를 활용한 기업 주가지수 예측 (A Prediction of Stock Price Through the Big-data Analysis)

  • 유지돈;이익선
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.154-161
    • /
    • 2018
  • This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model (1) is low, and so the prediction performance of the model (1) is relatively better than that of the prediction model (2). As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.