• Title/Summary/Keyword: intelligent navigation system

Search Result 355, Processing Time 0.029 seconds

Implementation of Intelligent Home Network System using Wireless Sensor (무선센서를 이용한 지능형 홈네트워크 시스템 구현)

  • Ju, Jae-han;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.294-299
    • /
    • 2017
  • Home network service is evolving into a service that can receive contents such as remote education, home automation, remote meter reading and various entertainment anytime and anywhere by connecting all household appliances in home with wired and wireless network. In this paper, an intelligent home gateway installed at home is connected to the mobile communication terminal from the outside to solve the problems of the existing home network and configure and maintain a more efficient and comfortable home network environment for the user, In the window, the login page is activated to confirm the user access authority, and the user proceeds the authentication procedure through own login information. When the normal authentication procedure is performed, the intelligent home gateway maintains only the network connection with the user, and the user presents the intelligent home network system using the RFID which is accessed by the intelligent home network system.

Building of an Navigation Guiding System Using Fuzzy Theory (퍼지이론을 이용한 항해안내시스템의 구축)

  • Park Gyei-Kark;Hong Tae-Ho;Seo Ki-Yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.369-374
    • /
    • 2005
  • Currently, ECDIS and GPS plotters are much used as equipment providing operators with route information, but they do not have any function of automatic route creation and route explanation, so available for only experienced operators. Especially, the present situation is that no study is made of the automatic route creation and route explanation using ENC for ECDIS, substitution system of paper chart. ENC is the electronic navigation chart that is produced using S-52, 5-57 standard format required by IHO. In this paper, an Navigation Guiding System(NGS) is proposed to generate an optimal route where ENC and GPS data is fusioned including the wind direction and speed of an anemometer. The proposed system was testified by a simulation, and its effectiveness was verified.

Accuracy Improvement of Laser Navigation System using FIS and Reliability (FIS와 신뢰도를 이용한 레이저 내비게이션의 정밀도 향상)

  • Jung, Eun-Kook;Kim, Jung-Min;Jung, Kyung-Hoon;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • This paper presents to study the accuracy improvement of the laser navigation using FIS(fuzzy inference system) and the reliability. As wireless guidance system, the top-mounted laser with the laser navigation can rotate $360^{\circ}$ with phototransistor or other optical sensors that read the return signal from reflectors mounted at the perimeter of the workspace. The type of major existing guidance systems is a wire guidance system. Because they have high accuracy and fast response time, they are used to most industries. However, their installation cost is very expensive and maintenance is very difficult because their sensors are placed approximately 1 inch below the ground or embedded in the floor. To solve those problems, the laser navigation was developed as a wire guidance system. It does not need to reconstruct a floor or ground. And it can reduce costs of installation and maintenance because changing the layout is easy. However, it is difficult to apply to an industrial field because it is easily affected by disturbances which cause loss and damage of data, and has slow respond time. Therefore, we study the accuracy improvement of the laser navigation. The proposed method is a correction method using reliability of the laser navigation. here, reliability is calculated by FIS which is designed with the analyzed characteristics of the laser navigation. For performance comparison, we use original position data form the laser navigation and position data corrected by original reliability from the laser navigation. In experimental result, we verified that the performance of the proposed method compared the others is improved by about 50% or more.

An Autonomous Navigation System for Unmanned Underwater Vehicle (무인수중로봇을 위한 지능형 자율운항시스템)

  • Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2007
  • UUV(Unmanned Underwater Vehicle) should possess an intelligent control software performing intellectual faculties such as cognition, decision and action which are parts of domain expert's ability, because unmanned underwater robot navigates in the hazardous environment where human being can not access directly. In this paper, we suggest a RVC intelligent system architecture which is generally available for unmanned vehicle and develope an autonomous navigation system for UUV, which consists of collision avoidance system, path planning system, and collision-risk computation system. We present an obstacle avoidance algorithm using fuzzy relational products for the collision avoidance system, which guarantees the safety and optimality in view of traversing path. Also, we present a new path-planning algorithm using poly-line for the path planning system. In order to verify the performance of suggested autonomous navigation system, we develop a simulation system, which consists of environment manager, object, and 3-D viewer.

Goal-oriented Geometric Model Based Intelligent System Architecture for Adaptive Robotic Motion Generation in Dynamic Environment

  • Lee, Dong-Hun;Hwang, Kyung-Hun;Chung, Chae-Wook;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2568-2574
    • /
    • 2005
  • Control architecture of the action based robot engineering can be divided into two types of deliberate type - and reactive type- controller. Typical deliberate type, slow in reaction speed, is well suited for the realization of the higher intelligence with its capability to forecast on the basis of environmental model according to time flow, while reactive type is suitable for the lower intelligence as it fits to the realization of speedy reactive action by inputting the sensor without a complete environmental model. Looking at the environments in the application areas in which robots are actually used, we can see that they have been mostly covered by the uncertain and unknown dynamic changes depending on time and place, the previously known knowledge being existed though. It may cause, therefore, any deterioration of the robot performance as well as further happen such cases as the robots can not carry out their desired performances, when any one of these two types is solely engaged. Accordingly this paper aims at suggesting Goal-oriented Geometric Model(GGM) Based Intelligent System Architecture which leads the actions of the robots to perform their jobs under variously changing environment and applying the suggested system structure to the navigation issues of the robots. When the robots do perform navigation in human life changing in a various manner with time, they can appropriately respond to the changing environment by doing the action with the recognition of the state. Extending this concept to cover the highest hierarchy without sticking only to the actions of the robots can lead us to apply to the algorithm to perform various small jobs required for the carrying-out of a large main job.

  • PDF

A Ship Motion Control System for Autonomous Navigation (지능형 자율운항제어를 위한 선박운동제어시스템)

  • 이원호;김창민;최중락;김용기
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.6
    • /
    • pp.674-682
    • /
    • 2003
  • Ship autonomous navigation is designated as what computerizes mental faculties possessed of navigation experts, which are building navigation plans, grasping the situation, forecasting the fluctuation, and coping with the situation. An autonomous navigation system, which consists of several subsystems such as navigation system, a collision avoidance system, several data fusion systems, and a motion control system, is based on an intelligent control architecture for the sake of integrating the systems. The motion control system, which is one of the most essential system in autonomous navigation system, controls its propulsion and steering gears to move the ship satisfying its hydrodynamic characteristics. This paper is the study on the ship movement control system and its implementation which are totally developed and run on virtual-world system. Receiving the high-level control values such as a waypoint presented from the collision avoidance system, the motion control system generates them to low-level control values for propulsion and steering devices. In the paper, we develop a ship motion controller using Oldenburger's theory based on mathematical fundamentals, and simulate it with various scenarios in order to verify its performance.

Selection of the human factors design variables of in-vehicle navigation system (자동차 항법장치의 HMI 설계변수 선정에 관한 연구)

  • Cha, Doo-Won;Park, Peom;Lee, Seung-Whan;Kim, Byung-Woo
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.185-190
    • /
    • 1996
  • Navigation system is regarded as the interface border line between the Intelligent Transportation Systems (ITS) and the driver as the prospective information provider of the ATIS (Advanced Traveler Information System). Following theory, if the navigation system appropriately designed and utilized, that can maximize the transport efficiency, contribute to improvements of the environments and road safety. To accomplish these dinds of objectives of the navigation system use, human factors plays an important roles specially focused on the driver's safety, performance and system usability. Because the effectiveness of the system depends on the acceptance of the system, and the extent to which the system conforms to driver physical and cognitive limitations and capabilities. Therefore, the ergonomic design vaniables must be seriously selected and reflected in early design step for more effective and appreciate product design. As the first step of this aim, this study selected and categorized the human factors design variables of the navigation system.

  • PDF

A Navigation Control Algorithm for Automated Guided Vehicle Based on Neural Network Sensing Prediction (신경망 예측에 기반한 AGV의 주행 알고리듬)

  • 나용균;김선효;오세영;성학경;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.428-428
    • /
    • 2000
  • A robust intelligent algorithm for AGV navigation control is presented here based on both magnetic and gyro sensors to track a reference trajectory. Since the proposed system uses an intermittent array of short magnetic tape strips, it lends itself to a very easy installation and maintenance compared to other types of positioning references such as electric wire, magnets, RF and laser beacons. The neural network is to predict the lateral deviation of the AGV in the intervals where no magnetic tape references are available. Further, the use of intelligent control ensures a robust and flexible control performance. Computer simulation of AGV control demonstrates its adequate tracking performances even where the sensor information is not available. Real experiments using Samsung AGV are also on the way for real verification

  • PDF

Application of GNSS Multipath Map by Correction Projection to Position Domain in Urban Canyon (도심지 GNSS 다중경로 오차 지도 적용을 위한 다중경로 보정정보 위치 영역 투영 기법)

  • Yongjun Lee;Heonho Choi;Byungwoon Park
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.155-158
    • /
    • 2024
  • Multipath, a major error source in urban GNSS positioning (global navigation satellite system), pose a challenge due to its site-dependent nature, varying with the user's signal reception environment. In our previous study, we introduced a technique generating GNSS multipath map in urban canyon. However, due to uncertainty in initial GNSS positions, applying multipath maps required generating multiple candidate positions. In this study, we present an efficient method for applying multipath maps by projecting the multipath correction in position domain. This approach effectively applies multipath maps, addressing the challenges posed by urban user position uncertainties.