• 제목/요약/키워드: intelligent material

검색결과 310건 처리시간 0.026초

초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조 (Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process)

  • 김용렬;정현택
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.231-237
    • /
    • 2014
  • 최근 자원과 에너지를 절약하고 효과적으로 사용하여 환경 훼손을 줄이고 청정에너지를 이용할 수 있는 기술의 연구가 활발하게 진행되고 있다. 이와 관련 하여, 친환경적이고 경제적이며 독성이 거의 없는 초임계 유체가 물질의 합성과 프로세스에 많이 응용되고 있다. 이산화탄소는 낮은 임계온도와 압력, 가격 경쟁력 그리고 무독성 등의 장점을 가짐으로써 초임계 공정에 많이 사용되고 있는 용매중에 하나이다. 그러나 분자량이 높은 고분자들에게는 낮은 용해력이 단점으로 있어서 사용에 제한적이다. 따라서, 분자량이 높은 고분자를 용해하기 위해선 하이드로카본 계열의 용매를 사용하여야 한다. 본 연구에서는, 초임계 유체를 이용하여 Poly (methyl methacrylate)/클레이 나노 복합체 제조에 관한 연구를 진행 하였다. 또한, 초임계 유체 내에서 분산성을 극대화 할 수 있도록 $Na^+$-MMT 클레이 표면을 플로린 계열의 surfactant로 개질 시키어 복합체 제조에 응용 하였다. 개질된 클레이를 이용하여 제조 된 복합체는 neat Poly (methyl methacrylate)보다 향상된 기계적, 열적 특성을 보였으며, 제조 된 복합체는 X-ray 회절 방법, 열적 안정성 그리고 TEM 으로 나노 클레이의 분산성을 분석 하였다.

부산 신항 배후단지 유치산업의 선정에 관한 연구 -한.중.일 국제분업구조와 부산항의 대 중.일 수출입구조 분석에 따른- (A Study on the Selection of Inducement Industry in Hinterland of Busan New Port - According to Analysis on the Structure in International Division of Labor among Korea, China and Japan and the Export-Import Structure of Busan Port against China and Japan -)

  • 김정수
    • 한국항만경제학회지
    • /
    • 제25권4호
    • /
    • pp.107-130
    • /
    • 2009
  • 부산 신항은 현재 개발 중에 있어 항만배후단지의 효유적인 이용이 부산 신항의 미래를 결정짓는 중요한 과제이다. 따라서 본 논문은 부산 신항의 항만배후단지의 효율적인 이용을 위해 우리나라의 교역량의 상당부분을 차지하고 있는 중국 및 일본과의 국제분업구조와 부산항의 대 중국 및 일본과의 수출입구조를 RCA지수와 GL지수를 이용하여 분석하고, 또한 부산 발전 10대 전략산업 등을 근거로 하여 부산 신항의 항만배후 단지에 유치할 적절한 산업을 선정하려고 한다. 한 중 일 3국의 국제분업구조 분석과 부산항의 대 중국 및 일본의 수출입실적 분석, 그리고 한 중 일 3국의 RCA 및 GL분석의 결과에 의하면, 3국간의 교역에서 한국의 비교우위 품목은 섬유 의류, 귀금속, 펄프 인쇄물, 기계 전기제품 등이며, 한국의 대 중국 및 일본교역에서는 기계 전기제품과 1차금속 비금속제품 등에서 산업내 무역이 이루어지고 있다. 여기에 더하여 광학 정밀기구 의료 악기 등이 높은 수출실적을 나타내고 있다. 또한 부산의 10대 전략산업인 의료, 섬유 의류 및 기계는 이미 포함되어 있으므로 자동차, 조선, 우주항공, 지능형 로봇, 나노소재, 연료전지 및 수소에너지 등이 추가될 수 있다. 그 결과 부산 신항의 항만배후단지에 유치할 산업은 저위기술분야인 섬유 의류와 펄프 인쇄물, 중저위기술분야인 귀금속과 1차금속 비금속제품은 물론 중고위기술분야인 기계 전기제품, 자동차, 조선, 고위기술분야인 광학 정밀기구 의료 악기, 나노소재, 연료전기, 우주항공, 지능형 로봇 등을 위주로 하고 이와 연관된 산업도 유치하는 것이 합리적이라 할 수 있다.

  • PDF

기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구 (A Study on Intelligent Value Chain Network System based on Firms' Information)

  • 성태응;김강회;문영수;이호신
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.67-88
    • /
    • 2018
  • 최근까지도 중소기업의 지속성장 및 경쟁력 확보에 대한 중요함을 인식함에 따라, 정부 차원에서의 유형 자원(R&D 인력, 자금 등)에 대한 지원이 주로 투입되어 왔다. 그러나 사업지원의 적절성이나 효과성, 효율성 면에서 서로 상충되는 정책부분이 존재하여 과소 지원이나 중복 지원 등 지원체계의 비효율성 문제가 제기되어온 것도 사실이다. 정부나 기업 관점에서는 중소기업의 한정된 자원으로 인해, 외부와의 협력을 통한 기술개발 및 역량강화가 기업의 경쟁우위를 창출하는 근간이라 보고 있으며, 이를 위한 가치창출 활동을 강조하고 있다. 기업 레벨에서의 지식생태계 구축을 통해 일련의 가치사슬로부터 기업거래 관계를 분석하고 결과를 가시화할 수 있는 밸류체인 네트워크 분석이 필요한 것도 이 때문이다. 특허/제품/기업명 검색을 통해 관련 제품의 정보나 특허 보유 기업의 기술(제품) 현황 정보를 제공하는 기술기회발굴시스템(Technology Opportunity Discovery system), 기업(재무)정보와 신용정보을 열람하게 해주는 CRETOP이나 KISLINE 등은 존재하고 있으나 밸류체인 네트워크 분석기반으로 유사(경쟁)기업의 리스트나 향후 거래 가능한 잠재 거래처 정보를 제공해주는 시스템은 부재한 실정이다. 따라서, 본 고에서는 KISTI에서 개발 운영중인 기업 비즈니스 전략수립 지원 파트너인 '밸류체인 네트워크 시스템(Value Chain Network System : VCNS)'을 중심으로, 탑재된 네트워크 기반 분석모듈의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)의 구성 로직과 시스템 활용방안을 고찰하며, 산업구조를 이해하고 기업의 신제품 개발을 위한 핵심정보가 되고 있는 지능형 밸류체인 분석 시스템의 네트워크 가시화 기능을 살펴보기로 한다. 한 기업이 다른 기업 대비 경쟁우위를 확보하기 위해서는 보유 특허 또는 현재 생산하고 있는 제품에 대한 경쟁자 식별이 필요하며, 세부 업종별 유사(경쟁)기업을 탐색하는 일은 대상기업의 사업화 경쟁력 확보에 핵심이 된다. 또한 기업간 비즈니스 활동인 거래정보는 유사 분야로 진출할 경우 잠재 거래처 정보를 제공하는 중요한 역할을 수행한다. 이러한 기업간 판매정보를 기반으로 구축된 네트워크 맵을 활용하여 기업 또는 업종 수준의 경쟁자를 식별하는 일은 밸류체인 분석의 핵심모듈로 탑재될 수 있다. 밸류체인 네트워크 시스템(VCNS)은 단순 수집된 종래의 기업정보에 밸류체인(value chain) 및 산업구조 분석개념을 접목하여 개별 기업의 시장경쟁 상황은 물론 특정 산업의 가치사슬 관계를 파악할 수 있다. 특히 업종구조 파악, 경쟁사 동향 파악, 경쟁사 분석, 판매처 및 구매처 발굴, 품목별 산업동향, 유망 품목 발굴, 신규 진입기업 발굴, VC별 핵심기업 및 품목 도출, 해당 기업별 보유 특허 파악 등 기업 레벨에서의 유용한 정보분석 툴로 활용 가능하다. 또한, 거래처 정보 및 재무데이터로부터 분석된 결과의 객관성 및 신뢰성을 기반으로, 현재 국내에서 이용 중인 15,000여개 회원기업과 연구개발서비스업 종사자, 출연(연) 및 공공기관 등에서 사업평가 정보지원, R&D 의사결정 지원 및 중 단기 수요예측 전망 등 다양한 목적(용도)에 밸류체인 네트워크 시스템을 활용할 수 있을 것으로 기대된다. 기업의 사업경쟁력 강화를 위해 정부기관 및 민간 연구개발서비스 기업을 중심으로 기술(특허) 및 시장정보가 제공되어 왔으며, 이는 특허분석(등급, 계량분석 위주) 또는 시장분석(시장보고서 기반 시장규모 및 수요예측 위주)의 형태로 지원되어 왔다. 그러나 기업이 사업화진출 단계에서 겪게 되는 애로요인의 하나인 정보부족을 해결하는데 한계가 있었으며, 특히 경쟁기업 및 거래가능 기업 후보군에 대한 탐색정보는 입수하기 어려웠다. 본 연구를 통해 제안된 네트워크맵 및 보유 데이터 기반의 실시간 밸류체인 가시화 서비스모듈이 중견 중소기업이 당면한 신규시장 진출시 경쟁기업 대비 예상점유율, (예상)매출액 수준, 어느 기업을 컨택하여 유통망(원자재/부품에 대한 공급처, 완제품/모듈에 대한 수요처)을 확보할 지에 대한 핵심정보를 제공할 수 있을 것으로 기대된다. 향후 연구에서는 대체기업(또는 대체품목) 경쟁지표의 개발과 연구주체의 참여를 통한 경쟁요인별 지표의 고도화 연구, VCNS의 성능향상을 위한 데이터마이닝 기술 및 알고리즘을 추가 반영하도록 수행하고자 한다.

사례 기반 지능형 수출통제 시스템 : 설계와 평가 (Export Control System based on Case Based Reasoning: Design and Evaluation)

  • 홍원의;김의현;조신희;김산성;이문용;신동훈
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.109-131
    • /
    • 2014
  • 최근 전 세계적인 원전 설비의 수요 증가로 원자력 전략물자 취급의 중요성이 높아지는 가운데, 국외 수출을 위한 원전 관련 물품 및 기술의 신청 또한 급증하는 추세이다. 전략물자 사전판정 업무는 통상 원자력 물자 관리에 해박한 전문가의 경험 및 지식에 근거하여 수행되어 왔지만, 급증하는 수요에 상응하는 전문 인력의 공급이 부족한 실정이다. 이러한 문제를 극복하기 위하여, 본 연구진은 전략물자 수출 통제를 위한 사례 기반 지능형 수출 통제 시스템을 설계 및 개발하였다. 이 시스템은 현장 전문가의 전담 업무이던 신규 사례에 대한 전략물자 사전판정 과정 업무의 주요 맥락을 자동화 하여 전문가 및 관계 기관이 감당해야 할 업무 부담을 줄이며, 빠르고 정확한 판정을 돕는 의사결정 지원 시스템의 역할을 맡는다. 개발된 시스템은 사례 기반 추론 (Case Based Reasoning) 방식에 기반을 두어 설계되었는데, 이는 과거 사례의 특성을 활용하여 신규 사례의 해법을 유추하는 추론 방법이다. 본 연구에서는 자연어로 작성된 전자문서 처리에 널리 사용되는 텍스트 마이닝 분석 기법을 원자력 분야에 특화된 형태로 응용하여 전략물자 수출통제 시스템을 설계하였다. 시스템 설계의 근거로 선행 연구에서 제안된 반자동식 핵심어 추출 방안의 성능을 보다 엄밀히 검증하였고, 추출된 핵심어로 신규 사례와 유사한 과거 사례를 추출하는 알고리즘을 제안하였다. 제안된 방안은 텍스트 마이닝 분야의 TF-IDF 방법 및 코사인 유사도 점수를 활용한 결과(${\alpha}$)와 원자력 분야에서 통용되는 개념적 지식을 계통으로 분류하여 도출한 결과(${\beta}$)를 조합하여 최종 결과 (${\gamma}$) 를 생성하게 된다. 세부 요소 기술의 성능 검증은 임상 데이터를 활용한 실험 및 실무 전문가의 의견수렴을 통해 이루어졌다. 개발된 시스템은 사전판정 전문 인력을 다수 양성하는 데 드는 비용을 절감하는 데 일조할 것이며, 지식서비스 산업의 의미 있는 응용 사례로서 관련 산업의 성장에 기여할 수 있을 것으로 보인다.

기업의 SNS 마케팅 활동이 이용자 행동에 미치는 영향: 페이스북 팬페이지 애널리틱스를 중심으로 (The Effect of Corporate SNS Marketing on User Behavior: Focusing on Facebook Fan Page Analytics)

  • 전형준;서봉군;박도형
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.75-95
    • /
    • 2020
  • 소셜네트워크서비스(SNS)의 성장과 함께 다양한 형태의 SNS가 등장했다. 상호작용성, 정보 교류, 엔터테인먼트 등 다양한 이용 동기를 바탕으로 SNS 이용자 또한 빠르게 증가하는 추세이다. 그중 페이스북은 대표하는 SNS 채널로서 기업에서도 페이스북 페이지를 활용해 홍보 채널로 활용하기 시작했다. 이를 위해 운영 초기, 기업은 팬 수 확보에 나섰고 그 결과 최근 기업 페이스북 팬 수는 많게는 수백만에 이를 정도로 늘어났다. 기업의 목표는 팬 수 확보를 넘어 콘텐츠를 통해 고객에게 기업 브랜드 이미지를 재고하고, 나아가 소통하는 수단으로 활용하고 있다. 이를 평가하는 주요 수치가 바로 본 연구의 종속변수에 해당하는 페이스북의 '좋아요', '댓글', '공유', '클릭 수' 등이다. 해당 수치 달성을 위해 콘텐츠 제작에 대한 고민이 선행되어야 하는데, 본 연구에서는 콘텐츠 제작 고려 사항을 3가지로 나눠 독립변수를 구성하였다. 콘텐츠 소재, 콘텐츠 구조, 메시지 스타일 등이 페이스북의 이용자 행동에 미치는 영향을 회귀분석을 이용해 분석하였다. 종속변수의 경우, 콘텐츠상에 모든 이용자의 행동 '전체 클릭 수'로 설정하였다. 본 연구에서는 각 독립 변수를 기존 연구 문헌을 통해 정의하고, 종속변수에 미치는 영향을 분석하였는데, '전체 클릭 수'의 경우, '자사연관', '실생활 관여도', '격식 x 관여도' 등의 변수가 유의미한 영향을 갖는 것으로 나타났다. 연구 결과를 통해, 콘텐츠 목적에 따른 최적화된 콘텐츠 전략을 제시함으로써, 기업 페이스북 운영자와 콘텐츠 제작자의 운영, 제작 전략에 기여할 수 있을 것으로 보인다.

기업의 빅데이터 투자가 기업가치에 미치는 영향 연구 (The effect of Big-data investment on the Market value of Firm)

  • 권영진;정우진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.99-122
    • /
    • 2019
  • IDC(International Data Corporation) 사(社)의 최근 보고서에 따르면, 2025년에는 2016년에 생성된 데이터의 10배에 달하는 163제타바이트의 데이터가 생성될 것이고 그 주체의 비중은 소비자에서 기업으로 이동하고 있다고 한다. 이러한 소위 '빅데이터의 물결'은 도래하고 있고 그 파장은 산업 전반적으로 영향을 미칠 것이다. 따라서, 방대한 데이터를 효과적으로 관리하는 것은 기업의 관점에서 그 어느 때보다 더 중요하다. 하지만, IT 투자에 대한 효과를 측정한 선행 연구는 다수 존재함에도 불구하고 빅데이터 투자 효과를 측정한 선행 연구는 거의 전무한 실정이다. 따라서, 해당 투자 효과를 정량적으로 분석한다면 기업의 의사 결정을 도울 수 있을 것이다. 본 연구는 효율적 시장 가설을 이론적 바탕으로 둔 사건연구방법론(Event Study Methodology)을 적용하여, 기업의 빅데이터 투자가 시장 투자자들의 반응에 미치는 영향을 측정하였다. 또한, 보다 심층적으로 이 효과를 분석하기 위해서 5가지 하위 변수를 설정했고 그 내용은 기업 크기 구분, 산업 구분(Finance와 ICT), 투자 구축 완료 구분, 벤더 유무 구분이다. 분석 결과, 91개 기업은 빅데이터 투자 공시 이후 시장 가치가 평균 0.92% 상승한다는 사실을 확인하였다. 특히 Finance 기업, non-ICT 기업, 시가 총액이 작은 기업, 빅데이터 전문 벤더 기업을 통해 투자한 기업, 그리고 빅데이터 시스템이 구축 완료됐다는 공시에 해당하는 기업의 시장 가치가 두드러지게 상승한다는 사실을 알 수 있었다. 본 연구는 빅데이터 투자 효과를 측정한 선행 연구가 거의 전무하다는 점에서 학문적인 의의를 지니고, 빅데이터 투자를 고려 중인 기업 의사 결정자들에게 실질적인 참고 자료가 될 수 있다는 점에서 실무적인 시사점을 갖는다.

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.

비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로 (Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables)

  • 이준식;김건우;박도형
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.195-220
    • /
    • 2018
  • 본 연구는 비트코인 가격 변화량에 영향을 미치는 요인에 대한 실증 분석을 수행하였다. 기존 연구들은 암호화폐와 관련해 블록체인 시스템의 보안성, 암호화폐가 불러일으키는 경제적 파급효과 및 법적 시사점, 소비자 수용 및 사용 의도와 사회현상을 중심으로 이루어졌다. 그러나 암호화폐 가격 변화가 급등과 급락을 반복하면서 많은 사회적 문제를 야기했음에도 불구하고 암호화폐의 가격 변화에 영향을 미치는 요인에 대한 실증적 연구는 부족하다. 때문에 본 연구에서 암호화폐 가격 변화에 미치는 영향 요인을 도출하기 위해 암호화폐 중 가장 대표적인 비트코인을 중심으로 분석을 진행하였다. 분석을 위해 소비자, 산업, 거시경제 세 가지 차원에서 가설을 수립, 각 차원의 변수에 대한 시계열 데이터를 수집하였다. 단위근 검정을 통해 시계열 데이터에 대한 가성 회귀를 제거하고 안정성을 검증한 후, 비트코인 가격 변화량에 영향을 미칠 수 있는 요인들에 대한 회귀 분석을 실시하였다. 분석 결과 비트코인 가격 변화량은 비트코인 거래 금지에 대한 검색 트래픽, 미국 달러지수 변화량과는 음의 상관관계를, GPU 벤더의 주가 변화량, 원유 가격 변화량과는 양의 상관관계를 갖는 것을 확인했다. 그 이유로는 비트코인 거래 금지는 비트코인 존폐와 관련해 투자심리에 부정적 영향을 미친 것으로 판단되며, GPU 벤더 주가는 비트코인 생산 단가 증가와 관련해 비트코인 가격에 영향을 미친 것으로 해석된다. 미국 달러지수와는 반대로 움직임으로서 비트코인이 금의 성격을 갖고 있음을 확인하였으며, 원유 가격과의 관계를 통해 원자재와 같은 투자 자산의 역할도 갖고 있음을 확인하였다. 본 연구의 결과를 통해 비트코인이 가진 성격을 규명하였으며, 비트코인 가격 변화 요인에 대한 실증 검증을 통해, 그 동안 부족했던 비트코인 가격 변화 요인을 규명하였고, 해당 요인들을 통해 실무적으로 소비자나 금융기관, 정부 기관에 대해 비트코인에 대한 전략적인 접근방법에 대한 가이드를 제공할 수 있다는 점에서 의의가 있다.

한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구 (A Study on the Revitalization of Tourism Industry through Big Data Analysis)

  • 이정미;류미나;임규건
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.149-169
    • /
    • 2018
  • 본 연구에서는 한국문화관광연구원에서 조사된 "2013년~2015년 외래 관광객 실태조사"의 약 36,000개 데이터에 대한 빅 데이터 분석을 통해 관광산업 활성화 방안을 도출해 보고자 한다. 이를 위해서 외래 관광객들의 '전반적 만족도', '재방문 의사', '추천의사' 변수에 가장 많은 영향을 끼치는 요인을 분석하고 해당 요인들의 각각에 대한 영향력에 대해 파악 하였다. 본 연구에서는 SPSS IBM Modeler 16.0의 의사결정나무(C5.0, CART, CHAID, QUEST), 인공신경망, 로지스틱 회귀분석의 데이터마이닝 기법을 이용하여 종속변수에 가장 큰 영향을 미치는 상위 변수 7개씩을 각각 도출하였고, 추가적으로 각 독립변수들의 영향력을 심도 있게 파악하기 위하여 R프로그래밍을 활용하여 SPSS IBM Modeler 16.0을 통해 도출된 각 독립변수들의 영향력을 파악하였다. 데이터 분석 결과 '전반적 만족도'에 가장 영향을 미치는 상위 변수 7개는 관광지매력도, 음식만족도, 숙박만족도, 교통수단만족도, 안내서비스만족도, 방문관광지수, 국가로 나타났으며 가장 큰 영향력을 미친 변수는 음식만족도와 관광지매력도로 분석되었다. '재방문 의사'에 가장 영향을 미치는 상위 변수 7개로는 국가, 여행 동기, 활동, 음식만족도, 제일 좋았던 활동, 관광안내서비스만족도, 관광지매력도로 나타났으며 그중 가장 큰 영향력을 미친 변수는 음식만족도와 여행 동기로 분석되었다. 마지막으로 '추천의사'에 영향을 미치는 상위 변수 7개로는 국가, 관광지매력도, 방문관광지수, 음식만족도, 활동, 관광안내서비스만족도, 비용으로 나타났으며 가장 큰 영향력을 미친 변수는 국가, 관광지매력도, 음식만족도로 분석되었다. 따라서 세 변수에 공통적으로 영향을 끼치는 요인은 음식만족도, 관광지매력도로 분석되었으며 해당 요인들이 공통적으로 한국여행에 대한 전반적 만족도와 재방문 의사, 추천의사에 미치는 영향이 크다는 것을 확인할 수 있었다. 본 연구는 외래 관광객들의 한국관광에 대한 활성화 방안을 "외래 관광객 실태조사" 빅 데이터 분석을 통해 규명함으로써 한국 관광 데이터 분석의 활용과 관광 정책 수립의 기초자료로 활용될 수 있을 것으로 기대되며 향후 기업 및 국가차원에서 한국 관광발전에 기여할 수 있는 활성화 방안을 마련하는 자료로 사용될 수 있을 것으로 기대한다.

빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단 (Animal Infectious Diseases Prevention through Big Data and Deep Learning)

  • 김성현;최준기;김재석;장아름;이재호;차경진;이상원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • 조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.