• Title/Summary/Keyword: intelligent controller

Search Result 1,443, Processing Time 0.025 seconds

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels

  • Wang, Yuanyuan;Chai, Shuhong;Nguyen, Hung Duc
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.314-324
    • /
    • 2020
  • Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly developed free running model scaled surface vessel was employed to execute the motion control experiments. After describing the design of the EKF trained RBFNN autopilot, the performances of the proposed control system were investigated by conducting experiments using the physical model on lake and simulations using the corresponding mathematical model. The results demonstrate that the developed control system is feasible to be used for the ship's motion control in the presences of environmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better performance regarding course keeping and trajectory tracking.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.

Feasibility Study of Improved Train Control System Using On-board Controller for Intelligent Control of Trackside Facilities (선로변 시설물의 지능적 제어를 위한 차상중심 열차제어시스템 시뮬레이션 기반 성능 평가)

  • Baek, Jong-Hyen;Jo, Hyun-Jeong;Chae, Eun-Kyung;Choi, Hyun-Young;Kim, Yong-Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.528-533
    • /
    • 2013
  • To improve the efficiency and safety of railway systems, the train control system has considerably evolved from the ground-equipment-based control system (e.g. track circuit, interlocking system, etc.) into the on-board-equipment-based control system. In addition, this train control system enables the rolling stock to intelligently control the trackside facilities by introducing information and communication technologies (ICT). Accordingly, since the ICT-based train control system simplifies the railway system (i.e. the heavy ground-equipment can be removed), an efficient and cost-effective railway system can be realized. In this paper, we perform a feasibility test of the ICT-based train control system using a simulation. To this end, we implement a test-bed consisting of prototype machines of on-board/ground equipment and introduce an integrated operation scenario for the train control. The simulation results satisfy all the requirements of train operation according to the scenario and show the effectiveness of the proposed train control system.

High Gain Observer-based Robust Tracking Control of LIM for High Performance Automatic Picking System (고성능 자동피킹 시스템을 위한 선형 유도 모터의 고이득 관측기 기반의 강인 추종 제어)

  • Choi, Jung-Hyun;Kim, Jung-Su;Kim, Sanghoon;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a high gain observer-based robust speed controller design for a linear induction motor (LIM) drive. The force disturbance as well as the mechanical parameter variations such as the mass and friction coefficient gives a direct influence on the speed control performance of APS. To guarantee a robust control performance, the system uncertainty caused by the force disturbance and mechanical parameter variations is estimated through a high gain disturbance observer and compensated by a feedforward manner. While a time-varying disturbance due to the mass variation can not be effectively compensated by using the conventional disturbance observer, the proposed scheme shows a robust performance in the presence of such uncertainty. A Simulink library has been developed for the LIM model from the state equation. Through comparative simulations based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Quantitative Evaluation of the Semi-Actuated Signal Control Systems (반감응 신호제어의 정량적 효과 평가에 관한 연구)

  • Kim, Seung-Jin;Lee, Sang-Soo;Lee, Choul-Ki;Park, Sung-Kyun;Lee, Ho-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • This study evaluated the quantitative effects of the deployment of semi-actuated signal systems using field data. For this, a semi-actuted signal system was deployed in the regional roadway network extensively. This paper investigated an operating strategy of semi-actuated signal systems for field application, and implemented the functional strategy into the standard signal controller. The performance was evaluated using three measures of effectiveness such as traffic volume, travel time, and the number of delayed vehicle. From the analysis results, traffic volume increased about 9.4% and 11.3% for morning and evening peak periods, respectively. The average travel time was reduced about 6.3% and 7.8% during morning and evening peak periods, respectively because of the expansion of bandwidths for major streets. In addition, the number of delayed vehicles was reduced about 36.4% and 23.9% for morning and evening peak periods, respectively. It is expected that the effectiveness of signal control system can be improved by incorporating a properly designed semi-actuated signal system in regional roadways with directional demand variation.

FADIS : An Integrated Development Environment for Automatic Design and Implementation of FLC (FADIS : 퍼지제어기의 설계 및 구현 자동화를 위한 통합 개발환경)

  • 김대진;조인현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.83-97
    • /
    • 1998
  • This paper developes an integrated environment CAD system that can design and implement an accurate and cost-effective FLC automatically. For doing this, an integrated development environment (IDE) (called FADIS; FLC Automatic Design and Implementation Station) is built by the seemless coupling of many existing. CAD tools in an attempt to the FADIS performs various functions such that (1) i~utomatically generate the VHDL components appropriate for the proposed FLC architecture from the various design parameters (2) simulate the generated VHDL code on the Synopsys's VHDL Simulator, (3) automatically compiler, (4) generate the optimized, placed, and routed rawbit files from the synthesized modules by Xilinx's XactStep 6.0, (5) translate the rawbit files into the downloadable ex- [:cution reconfigurable FPGA board (VCC's EVCI), and (7) continuously monitor the control status graphically by communicating the FLC with the controlled target via S-bus. The developed FADIS is tested for its validity by carrying out the overall procedures of designing and implementing the FLC required for the truck-backer upper control, the reduction of control execution time due to the controller's FPGA implementation is verified by comparing with other implementations.

  • PDF

Feature Map Based Complete Coverage Algorithm for a Robotic Vacuum Cleaner (청소 로봇을 위한 특징점 맵 기반의 전 영역 청소 알고리즘)

  • Baek, Sang-Hoon;Lee, Tae-Kyeong;Oh, Se-Young;Ju, Kwang-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • The coverage ability is one of essential techniques for the Robotic Vacuum Cleaner (RVC). Most of the RVCs rely on random or regular pattern movement to cover a target space due to the technical difficulties to implement localization and map and constraints of hardwares such as controller and sensors. In this paper, we consider two main issues which are low computational load and using sensors with very limited sensing capabilities. First, in our approach, computing procedures to build map and detect the RVC's position are minimized by simplifying data obtained from sensors. To reduce computational load, it needs simply presenting an environment with objects of various shapes. Another isuue mentioned above is regarded as one of the most important problems in our approach, because we consider that many RVCs use low-cost sensor systems such as an infrared sensor or ultrasonic sensor with limited capabilities in limited range, detection uncertainty, measurement noise, etc. Methods presented in this paper are able to apply to general RVCs equipped with these sensors. By both simulation and real experiment, we evaluate our method and verify that the proposed method guarantees a complete coverage.

A Study on Introduction of Bike Exclusive Signal Focused on Traffic Condition (국내 교통여건을 고려한 자전거전용신호 도입방안 연구)

  • Han, Won-Sub;Whang, Sang-Ho;Hyun, Cheol-Seung;Lee, Ho-Won;Oh, Yong-Tae;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.77-89
    • /
    • 2008
  • The bikes are conflicted with the cars and the pedestrian at the intersection and the road with the bike crossing. To establish the bike signal at this section is one method to solve this conflict. According to the survey for the bike road status and the biker's characters which are crossing the road at the intersection, the bike crossing are established with beside the pedestrian crossing and most of the bikers are crossing the street by the pedestrian signal. Also, the bike queue which is waiting the signal change at the stop line was cleared before the closing the pedestrian signal. Considering the result of this survey, TOUCAN crossing signal type in England for bike signal at the place where the bike crossing are established with beside the pedestrian crossing, in which bike rider and pedestrian can cross by the pedestrian signal operation, is suggested. However, at the place where the bike crossing is apart from the pedestrian crossing, the bike signal which is connected to the vehicle signal is suggested. All these types of bike signals can be accepted for the present bike crossing equipments and the biker's characters and be adapted to the police standard traffic signal controller by adjusting the signal time only without any function change.

  • PDF

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.