• Title/Summary/Keyword: intelligent Lighting control

Search Result 51, Processing Time 0.03 seconds

Design of Bi-directional RDM-DMX512 Converter for LED Lighting Control

  • Hung, Nguyen Manh;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.106-115
    • /
    • 2013
  • LED lighting control system using unidirectional DMX512 (digital multiplex with 512 pieces of information)) protocol has been the most popular. Nowadays, the user's consumption has been upgrading to the more intelligent system but the upgrading process does not affect the existing infrastructure. There were many researches use the additional communication for the feedback communication way such as WiFi, Controller Area Network (CAN), Power Line Communication (PLC), etc but all researches had inherent disadvantages that created the independent feedback with the existing DMX512 system. Our paper represents the novel method that uses the remote device management (RDM) protocol to associate the additional feedback with existent DMX512 infrastructure in the one system. The data in DMX512 frame sending to the DMX512 client is split and repacked to become the RDM packet. This RDM packet is transferred to the RDM monitor console and the response RDM packet is converted to the DMX512 frame for control DMX512 client devices. This is the closed loop control model which uses the bidirectional convertibility between RDM packet and DMX512 frame. The proposed method not only upgrades the feedback control function for the old DMX512 system without changing the existent infrastructure, but also solves compatible problems between new RDM devices and old DMX512 devices and gives the low cost solution for extending DMX512 universe.

Intelligent Lighting Control using Wireless Sensor Networks for Media Production

  • Park, Hee-Min;Burke, Jeff;Srivastava, Mani B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.423-443
    • /
    • 2009
  • We present the design and implementation of a unique sensing and actuation application -- the Illuminator: a sensor network-based intelligent light control system for entertainment and media production. Unlike most sensor network applications, which focus on sensing alone, a distinctive aspect of the Illuminator is that it closes the loop from light sensing to lighting control. We describe the Illuminator's design requirements, system architecture, algorithms, implementation and experimental results. The system uses the Illumimote, a multi-modal and high fidelity light sensor module well-suited for wireless sensor networks, to satisfy the high-performance light sensing requirements of entertainment and media production applications. The Illuminator system is a toolset to characterize the illumination profile of a deployed set of fixed position lights, generate desired lighting effects for moving targets (actors, scenic elements, etc.) based on user constraints expressed in a formal language, and to assist in the set up of lights to achieve the same illumination profile in multiple venues. After characterizing deployed lights, the Illuminator computes optimal light settings at run-time to achieve a user-specified actuation profile, using an optimization framework based on a genetic algorithm. Uniquely, it can use deployed sensors to incorporate changing ambient lighting conditions and moving targets into actuation. Experimental results demonstrate that the Illuminator handles various high-level user requirements and generates an optimal light actuation profile. These results suggest that the Illuminator system supports entertainment and media production applications.

Design and Implementation of the Lighting Control System for Intelligent Building (지능형 빌딩을 위한 조명 제어 시스템 설계 및 구현)

  • Yoon, Seok-Hyun;Park, Jin-Seok;Leem, Chae-Sung;Shim, Il-Joo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.317-320
    • /
    • 2002
  • In this thesis, we designed specific LonWorks nodes for lighting control then implemented the lighting control system through the operating scenarios. Developed lighting controller plays a role of one network node and according to information from other nodes, decides whether it toms on the light or not. In this way the lights can be controlled by using the location information of light in the lighting control node and the grouping information of the lights in the switch node.

  • PDF

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

Face Identification Method Using Face Shape Independent of Lighting Conditions

  • Takimoto, H.;Mitsukura, Y.;Akamatsu, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2213-2216
    • /
    • 2003
  • In this paper, we propose the face identification method which is robust for lighting based on the feature points method. First of all, the proposed method extracts an edge of facial feature. Then, by the hough transform, it determines ellipse parameters of each facial feature from the extracted edge. Finally, proposed method performs the face identification by using parameters. Even if face image is taken under various lighting condition, it is easy to extract the facial feature edge. Moreover, it is possible to extract a subject even if the object has not appeared enough because this method extracts approximately the parameters by the hough transformation. Therefore, proposed method is robust for the lighting condition compared with conventional method. In order to show the effectiveness of the proposed method, computer simulations are done by using the real images.

  • PDF

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

A Development of Multi-Sensors LED Streetlight Lighting Control System Based on RTOS (RTOS 기반의 다중센서 LED 가로등 점등제어 시스템 설계)

  • In, Chi-Goog;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1020-1026
    • /
    • 2012
  • In this paper, we proposed a RTOS-based lighting control system to improve energy efficiency. This proposed system, real time process was designed to the specified division of the LED streetlight control module for the RTOS-based lighting control into three different tasks. The first task transmits LED lighting signal by measuring illuminance, and the second task transmits motion detecting signal using motion detector. In the third task, lighting control to LED was designed through passed control signal from other tasks The execution status was examined ports that are directly to the ATmega128 MCU for the verification of the system, and illuminance distribution and operating conditions were verified through LED street field test. The proposed RTOS-based lighting control system has brought improving system performance and also facilitate an addition of other functions, and it was possible to optimize energy saving by intelligent lighting pattern control.

A Study on the Bluetooth Communication Module Platform for LED lighting control (LED 조명관제를 위한 블루투스 통신모듈 플랫폼에 관한 연구)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.846-847
    • /
    • 2016
  • LED lighting is energy in lighting control based on had developed into a human-centered / multi-functional lighting systems from simple one trillion people thereby using environmental change by combining IT technology and software, including a variety of sensor functions and communication functions, depending on the evolution of the IT Convergence Era the reduction, and the strength and the color tone customized illumination of the user-section of light has been desired. For this intelligent lighting system is applied to the sensor and the control center of the user should be possible, and it is necessary for this artist platform of the communication module. In this paper, we propose a communication platform that utilizes Bluetooth BLE module for LED lighting control.

  • PDF

Monitoring System on LED Lighting Device (LED 조명 장치 모니터링 시스템)

  • Kim, Gwan-Hyung;Jean, Jae-Hwan;Kim, Sung-Hyun;Koh, Jeong-Gook;Kang, Sung-In;Cho, Hyun-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.219-220
    • /
    • 2010
  • This paper presents the development of LED lighting device monitoring system, Brightness control for LED lighting and Installation of lighting equipment to collect environmental data Intelligent LED lighting control system is presented.

  • PDF

Study on Multi-switching Sensor-based LED Lighting Control Technology (멀티스위칭 센서기반 LED 조명제어기술에 관한 연구)

  • Jang, Tae-Su;Hong, Geun-Bin;Lee, Dae-Hyoung;Kim, Yong-Kab;Kim, Byun-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.813-814
    • /
    • 2012
  • Recently, along with a development to promote low-carbon green growth, LED control IT convergence technology that can create environmentally-friendly emotional lighting is receiving attention. This is an interface control technology that includes a multi-sensor, switching technology, LED optics, and Internet-based remote lighting control, all of which utilize the lighting characteristics of LED lighting. The proposed system is a study on an intelligent LED control technology, and aims to use a multi-switching sensor in order to control LED discharge current so as to improve energy-charging method, to use a battery's SoC sensor, and to improve efficiency in the winter according to a section.

  • PDF