• Title/Summary/Keyword: intelligence failure

Search Result 117, Processing Time 0.024 seconds

Field Applicability Study of Hull Crack Detection Based on Artificial Intelligence (인공지능 기반 선체 균열 탐지 현장 적용성 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.192-199
    • /
    • 2022
  • With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.

An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases (인공지능을 활용한 정책의사결정에 관한 탐색적 연구: 문제구조화 유형으로 살펴 본 성공과 실패 사례 분석)

  • Eun, Jong-Hwan;Hwang, Sung-Soo
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.47-66
    • /
    • 2020
  • The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.

Failure Prognostics of Start Motor Based on Machine Learning (머신러닝을 이용한 스타트 모터의 고장예지)

  • Ko, Do-Hyun;Choi, Wook-Hyun;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.85-91
    • /
    • 2021
  • In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.

The Relationship among the Learning Motivation, the Characteristics of Multiple Intelligence and Academic Achievement in Medical School Students (의대생들의 성적과 학업동기 및 다중지능의 관계분석)

  • Ryue, Sookhee;Lee, Haebum;Jeon, Woo Taek
    • Korean Medical Education Review
    • /
    • v.15 no.1
    • /
    • pp.46-53
    • /
    • 2013
  • The purpose of this study was to analyze the relationship among medical students' learning motivation, characteristics of multiple intelligence, and academic achievement. The participants were 144 medical students. The data were collected by administering learning motivation tests (self-confidence, self-efficacy, level of task, emotion of learning, learning behavior, failure tolerance, task difficulty, and academic self-efficacy), a multiple intelligence test (linguistic intelligence, logical-mathematical intelligence, musical intelligence, bodily-kinesthetic intelligence, spatial intelligence, interpersonal intelligence, intrapersonal intelligence, and naturalistic intelligence), and two semesters of grades. There is a correlation between multiple intelligences and learning motivation. Among academic self-efficacy of academic motivation, the self-control efficacy (0.28) and behavior (0.18) subscales are significantly positively correlated with academic achievement. However, the emotion subscale (-0.18) was significantly negatively correlated. Learning motivation was correlated with two of the eight multiple intelligence profiles: the intrapersonal intelligence (0.18) and bodily-kinesthetic intelligence (-0.19). The structural equation modeling analysis showed that the behavior and self-control efficacy subscales of intrapersonal intelligence had an impact on academic achievement. An analysis according to the academic achievement group showed significant differences in self-control efficacy and emotion subscales with intrapersonal intelligence. A positive relationship can be observed between learning motivation and some characteristics of multiple intelligence of medical school students. In light of the findings, it is worth examining whether we can control medical students' learning motivation through educational programs targeting self-control efficacy and intrapersonal intelligence.

Development of Dynamic Frequency Monitoring Software for Wide-Area Protection Relaying Intelligence (광역 보호계전 지능화를 위한 동적 주파수 모니터링 S/W 개발)

  • Kim, Yoon-Sang;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • The social and economic level of damages might be highly increased in the case of wide-area black-outages, because of heavy dependence of electricity. Therefore, the development of a wide-area protection relay intelligence techniques is required to prevent massive power outages and minimize the impact strength at failure. The frequency monitoring and prediction for wide-area protection relaying intelligence has been considered as an important technology. In this paper, a network-based frequency monitoring system developed for wide-area protection relay intelligence is presented. In addition, conventional techniques for frequency estimation are compared, and a method for advanced frequency estimation and measurement to improve the precision is proposed. Finally, an integrated monitoring system called K-FNET(Korea-Frequency Monitoring Network) is implemented based on the GPS and various energy monitoring cases are studied.

A Study of Reliability Evaluation and Analysis for Core Units of Machine Tools (공작기계 핵심부품의 신뢰성 평가 ${\cdot}$ 분석에 관한 연구)

  • Lee, Seung-Woo;Song, Jun-Yeob;Lee, Hwa-Ki
    • Journal of Applied Reliability
    • /
    • v.3 no.1
    • /
    • pp.41-58
    • /
    • 2003
  • Recently, the reliability evaluation and analysis are applied for many industrial products, and many products are required to guarantee in quality and in efficiency. The purpose of this paper is to present some of reliability prediction methodologies that are applicable to machine tools. Especially ATC (Automatic Tool Changer) and Interface Card of PC-NC, which are core components of the machine tools, were chosen as the target of the reliability evaluation and analysis. The results of this research has shown the failure rate, MTBF(Mean Time Between Failure), and reliability for those components. It is expected that proposed methodologies will be applicable to evaluation of reliability for other industrial products.

  • PDF

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

Are Critical Success Factors of BI Systems Really Unique?

  • Kim, Sung Kun;Kim, Jin Yong
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.45-61
    • /
    • 2017
  • Business intelligence has been attracting much attention these days. Despite such popularity of BI systems, it is widely known that about a half of BI system projects have failed. To grasp why many BI projects end in failure and what factors would make BI projects less failure-prone, a number of BI studies were made to produce a variety of CSFs. However, there is a paucity of information on whether these CSFs are distinctive from those of typical information systems. By identifying how BI CSFs differ from CSFs of typical information systems, we would be able to explain why most BI projects are more likely to be failure. It is believed that a corrective measure about CSFs will lead to more success in future BI projects. In addition, though there have been a number of similar types of BI systems such as decision support systems and executive information systems in existence, there was no study to determine whether there is ever a discrimination between CSFs of BI systems and the similarly-titled systems. This study is to answer these questions using a literature review analysis. The findings of our study are expected to be helpful in a successful implementation of BI systems.

Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors (머신러닝을 이용한 알루미늄 전해 커패시터 고장예지)

  • Park, Jeong-Hyun;Seok, Jong-Hoon;Cheon, Kang-Min;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.