• 제목/요약/키워드: integrity assessment

검색결과 552건 처리시간 0.029초

레이더 신호의 감쇠특성을 고려한 일체식 콘크리트 교량 바닥판의 상태평가 방법 고찰 (A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals)

  • 이지영;최재진;김홍삼;박고은;최명진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.84-93
    • /
    • 2016
  • 전자기파가 콘크리트 교량 바닥판을 통과할 때 에너지 손실 메카니즘에 의해 신호의 감쇠가 발생하며, 이는 콘크리트의 상대유전율과 전도도, 그리고 지리적 산란 손실의 영향에 따른 것으로 알려져 있다. 본 연구에서는 건전한 콘크리트에 대해서는 레이더파의 감쇠가 상부철근의 깊이와 선형관계에 있다는 점에 착안하여, 일체식 콘크리트 교량 바닥판에서 상태평가 지표로서의 레이더파의 신호감쇠를 실 교량에 적용하여 그 유용성에 대해 검토하였다. 연구결과, 손상된 콘크리트 교량 바닥판에서는 건전한 상태에 비해 상대적으로 큰 감쇠가 일어나며, 레이더 수신파의 총감쇠량에서 반사체의 깊이에 대해 선형적 관계인 부분을 제거하고 난 보정감쇠량은 일체식 콘크리트 교량 바닥판의 상태평가에 유용한 것으로 나타났다. 실제 공용 중인 손상 교량 바닥판에 적용한 결과, 제안된 방법은 교면에서 상부철근까지의 콘크리트 상태를 신뢰성 있게 평가할 수 있으며, 특히, 일체식 바닥판의 주손상요인인 상부철근의 부식환경을 간접적으로 평가할 수 있는 것으로 판단된다.

KOMPSAT Data Processing System: An Overview and Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • 대한원격탐사학회지
    • /
    • 제15권4호
    • /
    • pp.357-365
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the KOrea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in late 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As a part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed, archived, and provided. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

Towards UAV-based bridge inspection systems: a review and an application perspective

  • Chan, Brodie;Guan, Hong;Jo, Jun;Blumenstein, Michael
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.283-300
    • /
    • 2015
  • Visual condition inspections remain paramount to assessing the current deterioration status of a bridge and assigning remediation or maintenance tasks so as to ensure the ongoing serviceability of the structure. However, in recent years, there has been an increasing backlog of maintenance activities. Existing research reveals that this is attributable to the labour-intensive, subjective and disruptive nature of the current bridge inspection method. Current processes ultimately require lane closures, traffic guidance schemes and inspection equipment. This not only increases the whole-of-life costs of the bridge, but also increases the risk to the travelling public as issues affecting the structural integrity may go unaddressed. As a tool for bridge condition inspections, Unmanned Aerial Vehicles (UAVs) or, drones, offer considerable potential, allowing a bridge to be visually assessed without the need for inspectors to walk across the deck or utilise under-bridge inspection units. With current inspection processes placing additional strain on the existing bridge maintenance resources, the technology has the potential to significantly reduce the overall inspection costs and disruption caused to the travelling public. In addition to this, the use of automated aerial image capture enables engineers to better understand a situation through the 3D spatial context offered by UAV systems. However, the use of UAV for bridge inspection involves a number of critical issues to be resolved, including stability and accuracy of control, and safety to people. SLAM (Simultaneous Localisation and Mapping) is a technique that could be used by a UAV to build a map of the bridge underneath, while simultaneously determining its location on the constructed map. While there are considerable economic and risk-related benefits created through introducing entirely new ways of inspecting bridges and visualising information, there also remain hindrances to the wider deployment of UAVs. This study is to provide a context for use of UAVs for conducting visual bridge inspections, in addition to addressing the obstacles that are required to be overcome in order for the technology to be integrated into current practice.

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Bitcoin and the Monetary System Revolution Changes

  • Alotaibi, Leena;Alsalmi, Azhar;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.156-160
    • /
    • 2021
  • Every day brings a new challenge to the humanities. Life nowadays needs accuracy, privacy, integrity, authenticity, and security to run life systems especially the monetary system. Things now differ from previous centuries. Multiple varieties in digital banking have opened the new and most advanced innovations for human beings. The monetary system is going to developed day by day to facilitate the public. Electronic money has amazed the world and gave a challenge to central banking. For this purpose, there will be a need for strict security, information, and confidence. Blockchain technology has opened new gateways. Bitcoin has become the most famous digital currency, which has created a thunderstorm in digital marketing. Blockchain, as a new Financial Technology, has satisfied all the security issues and satisfied doing business in secure ways that encourage investors to invest and keep the world business wheel. Assessment of the sustainability of implementing Bitcoin in financial institutions will be discussed. Every new system has its pros and cons in which a clear vision of what we are about to use can be sought. Through this research paper, a demonstration of the monetary system evolution, the new ways of doing business, some evidence in a form of academic cases will be demonstrated through comparison a table, a suggested method to transfer to the new system in safe mode will be proposed, and a conclusion will be concluded.

Gaps-In-Noise Test Performance in Children with Speech Sound Disorder and Cognitive Difficulty

  • Jung, Yu Kyung;Lee, Jae Hee
    • Journal of Audiology & Otology
    • /
    • 제24권3호
    • /
    • pp.133-139
    • /
    • 2020
  • Background and Objectives: The Gaps-In-Noise (GIN) test is a clinically effective measure of the integrity of the central auditory nervous system. The GIN procedure can be applied to a pediatric population above 7 years of age. The present study conducted the GIN test to compare the abilities of auditory temporal resolution among typically developing children, children with speech sound disorder (SSD), and children with cognitive difficulty (CD). Subjects and Methods: Children aged 8 to 11 years-(total n=30) participated in this study. There were 10 children in each of the following three groups: typically developing children, children with SSD, and children with CD. The Urimal Test of Articulation and Phonology was conducted as a clinical assessment of the children's articulation and phonology. The Korean version of the Wechsler Intelligence Scale for Children-III (K-WISC-III) was administered as a screening test for general cognitive function. According to the procedure of Musiek, the pre-recorded stimuli of the GIN test were presented at 50 dB SL. The results were scored by the approximated threshold and the overall percent correct score (%). Results: All the typically developing children had normal auditory temporal resolution based on the clinical cutoff criteria of the GIN test. The children with SSD or CD had significantly reduced gap detection performance compared to age-matched typically developing children. The children's intelligence score measured by the K-WISC-III test explained 37% of the variance in the percent-correct score. Conclusions: Children with SSD or CD exhibited poorer ability to resolve rapid temporal acoustic cues over time compared to the age-matched typically developing children. The ability to detect a brief temporal gap embedded in a stimulus may be related to the general cognitive ability or phonological processing.

Gaps-In-Noise Test Performance in Children with Speech Sound Disorder and Cognitive Difficulty

  • Jung, Yu Kyung;Lee, Jae Hee
    • 대한청각학회지
    • /
    • 제24권3호
    • /
    • pp.133-139
    • /
    • 2020
  • Background and Objectives: The Gaps-In-Noise (GIN) test is a clinically effective measure of the integrity of the central auditory nervous system. The GIN procedure can be applied to a pediatric population above 7 years of age. The present study conducted the GIN test to compare the abilities of auditory temporal resolution among typically developing children, children with speech sound disorder (SSD), and children with cognitive difficulty (CD). Subjects and Methods: Children aged 8 to 11 years-(total n=30) participated in this study. There were 10 children in each of the following three groups: typically developing children, children with SSD, and children with CD. The Urimal Test of Articulation and Phonology was conducted as a clinical assessment of the children's articulation and phonology. The Korean version of the Wechsler Intelligence Scale for Children-III (K-WISC-III) was administered as a screening test for general cognitive function. According to the procedure of Musiek, the pre-recorded stimuli of the GIN test were presented at 50 dB SL. The results were scored by the approximated threshold and the overall percent correct score (%). Results: All the typically developing children had normal auditory temporal resolution based on the clinical cutoff criteria of the GIN test. The children with SSD or CD had significantly reduced gap detection performance compared to age-matched typically developing children. The children's intelligence score measured by the K-WISC-III test explained 37% of the variance in the percent-correct score. Conclusions: Children with SSD or CD exhibited poorer ability to resolve rapid temporal acoustic cues over time compared to the age-matched typically developing children. The ability to detect a brief temporal gap embedded in a stimulus may be related to the general cognitive ability or phonological processing.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Evaluation of the accuracy of mobile cone-beam computed tomography after spinal instrumentation surgery

  • Eom, Ki Seong;Park, Eun Sung;Kim, Dae Won;Park, Jong Tae;Yoon, Kwon-Ha
    • Journal of Trauma and Injury
    • /
    • 제35권1호
    • /
    • pp.12-18
    • /
    • 2022
  • Purpose: Pedicle screw fixation provides 3-column stabilization, multidimensional control, and a higher rate of interbody fusion. Although computed tomography (CT) is recommended for the postoperative assessment of pedicle screw fixation, its use is limited due to the radiation exposure dose. The purpose of this preliminary retrospective study was to assess the clinical usefulness of low-dose mobile cone-beam CT (CBCT) for the postoperative evaluation of pedicle screw fixation. Methods: The author retrospectively reviewed postoperative mobile CBCT images of 15 patients who underwent posterior pedicle screw fixation for spinal disease from November 2019 to April 2020. Pedicle screw placement was assessed for breaches of the bony structures. The breaches were graded based on the Heary classification. Results: The patients included 11 men and four women, and their mean age was 66±12 years. Of the 122 pedicle screws, 34 (27.9%) were inserted in the thoracic segment (from T7 to T12), 82 (67.2%) in the lumbar segment (from L1 to L5), and six (4.9%) in the first sacral segment. Although there were metal-related artifacts, the image of the screw position (according to Heary classification) after surgery could be assessed using mobile CBCT at all levels (T7-S1). Conclusions: Mobile CBCT was accurate in determining the location and integrity of the pedicle screw and identifying the surrounding bony structures. In the postoperative setting, mobile CBCT can be used as a primary modality for assessing the accuracy of pedicle screw fixation and detecting postoperative complications.