• Title/Summary/Keyword: integrated proportional navigation guidance

Search Result 3, Processing Time 0.023 seconds

Absolute Stability Margins in Missile Guidance Loop

  • Kim, Jong-Ju;Lyou, Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.460-466
    • /
    • 2008
  • This paper deals with the stability analysis of a missile guidance loop employing an integrated proportional navigation guidance law. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. Based on the circle criterion, we have defined the concept of absolute stability margins and obtained the gain and phase margins for the system assuming 1 st order missile/autopilot dynamics. The correlation between the absolute stability margins and the margins derived from the frozen system analysis is also discussed.

Absolutely Stable Region for Missile Guidance Loop (유도탄 유도루프의 절대안정한 시간영역)

  • Kim, Jong-Ju;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, the stable region for missile guidance loop employing an integrated proportional navigation guidance law is derived. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. By applying the circle criterion to the system, a bound for the time of flight up to which stability can be assured is established as functions of flight time. Less conservative results, as compared to the result by Popov criterion, are obtained.

Development of the integrated management simulation system for the target correction (표적 수정이 가능한 사용자 개입 통합 관리 모의 시스템 개발)

  • Park, Woosung;Oh, TaeWon;Park, TaeHyun;Lee, YongWon;Kim, Kibum;Kwon, Kijeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.600-609
    • /
    • 2017
  • We designed a target management integration system that enables us to select the final target manually or automatically from seeker's sensor image. The integrated system was developed separately for the air vehicle system and the ground system. The air vehicle system simulates the motion dynamics and the sensor image of the air vehicle, and the ground system is composed of the target template image module and the ground control center module. The flight maneuver of the air vehicle is based on pseudo 6-degree of freedom motion equation and the proportional navigation guidance. The sensor image module was developed using the known infrared(IR) image rendering method, and was verified by comparing the rendered image to that of a commercial software. The ground control center module includes an user interface that can display as much information to meet user needs. Finally, we verified the integrated system with simulated impact target mission of the air vehicle, by confirming the final target change and the shot down result of the user's intervention.