• Title/Summary/Keyword: integrated displacement method

Search Result 77, Processing Time 0.023 seconds

Overload Analysis and Fatigue Life Prediction Using an Effective J-Integral of Spot Welded Specimens (점용접시편의 과부하해석 및 유효 J-적분에 의한 피로수명예측)

  • Lee, Hyeong-Il;Choe, Jin-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.567-580
    • /
    • 2000
  • This paper proposes an integrated approach, which is independent of specimen geometry and loading type, for predicting the fatigue life of spot welded specimens. We first establish finite element models reflecting the actual specimen behaviors observed on the experimental load-deflection curves of 4 types of single spot welded specimens. Using finite element models elaborately established, we then evaluate fracture parameter J-integral to describe the effects of specimen geometry and loading type on the fatigue life in a comprehensive manner. It is confirmed, however, that J-integral concept alone is insufficient to clearly explain the generalized relationship between load and fatigue life of spot welded specimens. On this ground, we introduce another effective parameter $J_e$ composed of $J_I$, $J_{II}$, $J_{III}$, which has been demonstrated here to more sharply define the relationship between load and fatigue life of 4 types of spot welded specimens. The crack surface displacement method is adopted for decomposition of J, and the mechanism of the mixed mode fracture is also discussed in detail as a motivation of using $J_e$.

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.

An Experimental Study of Demountable Bolted Shear Connectors for the Easy Dismantling and Reconstruction of Concrete Slabs of Steel-Concrete Composite Bridges (강합성 교량의 콘크리트 바닥판 해체 및 재시공이 용이한 분리식 볼트접합 전단연결재에 관한 실험적 연구)

  • Jung, Dae Sung;Park, Se-Hyun;Kim, Tae Hyeong;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.751-762
    • /
    • 2022
  • Welded head studs are mainly used as shear connectors to bond steel girders and concrete slabs in steel-concrete composite bridges. For welded shear connectors, environmental problems include noise and scattering dust which are generated during the removal of damaged or aged slabs. Therefore, it is necessary to develop demountable shear connectors that can easily replace aged concrete slabs for efficient maintenance and thus for better management of environmental problems and life cycle costs. The buried nut method is commonly studied in relation to bolted shear connectors, but this method is not used in civil structures such as bridges due to low rigidity, low shear resistance, and increased initial slip. In this study, in order to mitigate these problems, a demountable bolted shear connector is proposed in which the buried nut is integrated into the stud column and has a tapered shape at the bottom of an enlarged column shank. To verify the performance of the proposed demountable stud bolts in terms of static shear strength and slip displacement, a horizontal shear test was conducted, with the performance outcomes compared to those of conventional welded studs. It was confirmed that the proposed demountable bolted shear connector is capable of excellent shear performance and that it satisfies the slip displacement and ductility design criteria, meaning that it is feasible as a replacement for existing welding studs.

Two Dimensional Flexible Body Response of Very Large Floating Structures (거대 부체구조물의 2차원 유연체 해석 및 거동)

  • Namseeg Hong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.274-286
    • /
    • 1996
  • Two-dimensional flexible body analysis (hydroelasticity theory) is adopted to a very large floating structure that may be multimodule and extend in the longitudinal direction. The boundary-element method (BEM) and Green function method(GFM) are used to obtain the hydrodynamic coefficients. The structure is considered to be a flexible beam responding to waves in the vertical direction and a consistent formulation for the hydrostatic stiffness is derived. The resulting coupled equations of motion are solved directly. Two designs of the module connectors are considered: a rotationally-flexible hinge connector, and a rotationally-rigid connector Numerical examples are presented to an integrated system of semi-submersibles. The analysis provides basic motions and section forces, which are useful to develop an understanding of the fundamental modes of displacement and force amplitudes for which multi-module VLFSs must be designed. The results show that while the hinge connectors result in greater motion, the rigid connectors increase substantially the sectional moments.

  • PDF

Comparison of Non-amplified and Amplified DNA Preparation Methods for Array-comparative Gnomic Hybridization Analysis

  • Joo, Hong-Jin;Jung, Seung-Hyun;Yim, Seon-Hee;Kim, Tae-Min;Xu, Hai-Dong;Shin, Seung-Hun;Kim, Mi-Young;Kang, Hyun-Mi;Chung, Yeun-Jun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.246-252
    • /
    • 2008
  • Tumor tissue is usually contaminated by normal tissue components, which reduces the sensitivity of analysis for exploring genetic alterations. Although microdissection has been adopted to minimize the contamination of tumor DNA with normal cell components, there is a concern over the amount of microdissected DNA not enough to be applied to array-CGH reaction. To amplify the extracted DNA, several whole genome amplification (WGA) methods have been developed, but objective comparison of the array-CGH outputs using different types of WGA methods is still scarce. In this study, we compared the performance of non-amplified microdissected DNA and DNA amplified in 2 WGA methods such as degenerative oligonucleotide primed (DOP)-PCR, and multiple strand displacement amplification (MDA) using Phi 29 DNA polymerase. Genomic DNA was also used to make a comparison. We applied those 4 DNAs to whole genome BAC array to compare the false positive detection rate (FPDR) and sensitivity in detecting copy number alterations under the same hybridization condition. As a result microdissected DNA method showed the lowest FPDR and the highest sensitivity. Among WGA methods, DOP-PCR amplified DNA showed better sensitivity but similar FPDR to MDA-amplified method. These results demonstrate the advantage and applicability of microdissection for array-CGH analysis, and provide useful information for choosing amplification methods to study copy number alterations, especially based on precancerous and microscopically invaded lesions.

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.

Development and Application of Construction Control System for Excavation (굴착 관리 정보화 시스템의 개발 및 적용)

  • 권오순;정충기;김재관;이해성;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.153-166
    • /
    • 1999
  • Since the reliability of results by the existing analyzing method is low, in the case of for excavation performed in urban area whose stability is of great importance, construction control based on field monitoring is always necessary. But the field monitoring reflects only the behavior of construction process that has already been carried out, and it has limitations in predicting the behavior of the expected construction process, which is practically more important for construction control. In this study, construction control system for excavation which can predict the behavior of the expected processes during construction with high degree of accuracy, is developed by adopting inverse analysis. The inverse analied applied field monitoring results to excavation analysis can improve the reliability of predicted results. The developed system uses an elasto-plastic soil spring model for the excavation analysis and the minimization of least squared errors between measured displacements and calculated displacements for the inverse analysis. All the required processes for construction control can be performed as an integrated work within the system reflecting real time application and user's convenience. Their applicabilitis are confirmed by two case studies.

  • PDF