• Title/Summary/Keyword: integrated decks

Search Result 5, Processing Time 0.019 seconds

Evaluation of structural performance in integrated precast decks for a rapid construction (급속 시공을 위한 일체형 프리캐스트 바닥판의 구조성능 평가)

  • Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • In this study we developed an integrated precast concrete decks for a rapid construction. The structural performance in the integrated precast bridge decks is evaluated by real-scale test bed and detailed finite element analyses. The numerical analysis results were compared with the experimental data from a real-scaled single-span precast/prestressed concrete bridge decks under truck loading. Parametric studies are focused on the various effects of external loads on the structural behavior for different locations and measuring points on the precast bridge decks. The assessment in this study indicates that the integrated precast bridge decks show an excellent structural performance as expected.

Analytical Study on Structural Performance of Wire-Integrated Steel Decks with Varied Lattice End-Support Configurations (철선일체형 데크플레이트의 래티스 단부 지지형상과 구조성능에 대한 해석적 연구)

  • Sanghee Kim;Jong-Kook Hong;Deung-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • This study investigated the structural performance of wire-integrated steel decks with varied lattice end support conditions through finite element analysis. The results indicated that the steel decks with the lattice foots positioned above the supporting structural member have the higher system stiffness compared to the cases with the lattice foots shifted away from the support. It is also observed that the contribution of the end vertical bars on both the system stiffness and the strength is negligible when the lattice foots are located on the support. It is, especially, revealed that the end vertical bars can be eliminated when the lattice foot length is not smaller than 40mm. The ultimate load-carrying capacity of the system is not significantly affected by the lattice end support condition. The failure mode of the system is the top bar buckling at the center of the deck plate, the lattice end buckling, and the combination of both depending of design intention.

Development and Research of MMA Waterproof Coating and Waterproof System for Concrete Civil Structures (콘크리트 토목구조물 교면용 MMA 도막방수재 및 교면방수 시스템의 개발 연구)

  • Chul-Woo Lim;Sang-Ho Ji;Ki-Won An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2024
  • Asphalt-based waterproofing materials for bridge decks face issues such as softening or liquefaction of the material during the process of pouring hot asphalt concrete on top of the waterproofing layer. This leads to instability and reduced thickness of the waterproofing layer. To address these problems, new solutions beyond the existing materials, including the development and adoption of new materials, are required. Therefore, this study investigates the properties of MMA(Methyl Methacrylate) coating waterproofing material, which meets the basic physical properties for bridge deck waterproofing. We examined the overall quality standards in a system where the substrate concrete, waterproofing material, and paving layer are integrated. The study confirmed the applicability of MMA coating waterproofing material on bridge decks. The results indicate that a stable application of MMA coating waterproofing material for civil engineering structures' bridge decks can be achieved with a mix ratio of hard MMA resin : soft MMA resin : powder = 6 : 34 : 60. Additionally, when using emulsified asphalt with hardening characteristics for the adhesion between the dissimilar materials of MMA waterproofing and asphalt concrete, it is expected to meet the minimum quality standards of the Ministry of Land, Infrastructure, and Transport's 'Guidelines for Asphalt Concrete Pavement Construction (2021.07)'.

A Study on Behavior of Post-integrated Abutment Bridge When Abutment and Bridge Decks are Jammed (교대 협착 발생 시 무조인트화 교량의 거동 분석 연구)

  • Park, Yang Heum;Nam, Moon S.;Jang, Il Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.31-35
    • /
    • 2021
  • The expansion joints installed on the bridge for the accommodation of expansion and contraction of the supper structure are essential members of the bridge. However, the expansion joints are deteriorated over time and the waterproof function weakens, causing rainwater to penetrate and deteriorate the structure. In order to solve the traffic congestion caused by frequent replacement of the old expansion joints along with the deterioration of the structure, a post-integrated abutment bridge in which the existing expansion joints are removed and replaced with reinforced concrete link connection has been applied to highway bridges since 2016. After the post-integrated abutment method was applied, it was partially applied to bridges in which the superstructure and abutment were jammed. In this study, the causes of problems that may occur when the post-integrated abutment method is applied to the jammed bridge were analyzed numerically. It was analyzed that damage occurred in the link connection part. Based on the results of this study, the application condition for the post-integrated abutment method is reinforced as it is not possible to apply the post-integrated abutment method to bridges are already jammed.

Development and Validation of MARS-KS Input Model for SBLOCA Using PHWR Test Facility (중수로 실증 실험설비를 이용한 소형냉각재상실사고의 MARS-KS 입력모델 개발 및 검증계산)

  • Baek, Kyung Lok;Yu, Seon Oh
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2021
  • Multi-dimensional analysis of reactor safety-KINS standard (MARS-KS) is a thermal-hydraulic code to simulate multiple design basis accidents in reactors. The code has been essential to assess nuclear safety, but has mainly focused on light water reactors, which are in the majority in South Korea. Few previous studies considered pressurized heavy water reactor (PHWR) applications. To verify the code applicability for PHWRs, it is necessary to develop MARS-KS input decks under various transient conditions. This study proposes an input model to simulate small-break loss of coolant accidents for PHWRs. The input model includes major equipment and experimental conditions for test B9802. Calculation results for selected variables during steady-state closely follow test data within ±4%. We adopted the Henry-Fauske model to simulate break flow, with coefficients having similar trends to integrated break mass and trip time for the power supply. Transient calculation results for major thermal-hydraulic factors showed good agreement with experimental data, but further study is required to analyze heat transfer and void condensation inside steam generator u-tubes.