• Title/Summary/Keyword: integrated antenna

Search Result 218, Processing Time 0.023 seconds

Dual-Polarized Small Base Station Antenna Integrated RF Module Applicable to Various Cell Environments for Next-Generation Mobile Communication Service

  • Lee, Jung-Nam;Lee, Yuro;Park, Bong-Hyuk;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.383-389
    • /
    • 2017
  • A small dual-polarized base station antenna with a simple isolation patch is presented. A high isolation is achieved when using a shorted metallic isolation patch. The experimental results indicate that the measured impedance bandwidth of the proposed antenna is 1.72 GHz to 1.89 GHz for small cell systems and that the isolation is more than 30 dB. The proposed antenna exhibits good radiation patterns with a peak gain of 8 dBi.

GPS/PCS Dual Polarization Compact Microstrip patch Antenna (GPS/PCS 이중편파 소형 마이크로스트립 패치 안테나)

  • Kim, Ho-Yong;Cho, Jung-Yong;Won, Chung-Ho;Lee, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.473-477
    • /
    • 2003
  • In this paper, a integrated structure of a two-element microstrip patch antenna with two feeds for GPS/PCS dual-band operation is proposed. The radiating element for PCS operation is a novel broad band low-profile cylindrical monopole top-loaded with a shorted meander patch, which gives linearly polarized conical radiation pattern and size reduction of patch due to meander line. The radiating element for GPS operation is a novel square-ring microstrip patch with truncated corners and slits. which provide circularly polarized broadside radiation patterns and size reduction due to slots. using dielectric substrate in GPS antenna of proposed antenna provide to improve isolation between two feeds and reduce size of patch. The proposed antenna achieves the bandwidth and polarization requirements of GPS and PCS systems.

  • PDF

A Study on the Design of Wideband Antenn as using U-Slot Patches (U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구)

  • Kim Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

The Design on a Wideband Active Printed Dipole Antenna using a Balanced Amplifier

  • Lee, Sung-Ho;Kwon, Se-Woong;Lee, Byoung-Moo;Yoon, Young-Joong;Song, Woo-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.112-116
    • /
    • 2002
  • In this paper, the active integrated antenna(AIA) using a wideband printed dipole antenna and a balanced amplifier is designed and fabricated. The proposed active printed dipole antenna has characteristics of easy matching, wide bandwidth and higher output power To feed balanced signal to printed dipole, a Wilkinson power divider and delay lines are used. The measured result shows that, at 6 GHz center frequency, the impedance bandwidth is 22 % (VSWR < 2), 3 dB gain bandwidth is 28 %, the maximum gain is 14.77 dBi, and output power at P1 dB point is 23 dBm.

Design and Performance Evaluation of On-chip Antenna for Ultra Low Power Wireless Transceiver

  • Kwon, Won-Hyun
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.405-409
    • /
    • 2012
  • In this paper, on-chip antennas applicable to ultra low power wireless transceiver are designed and evaluated. Using $0.18{\mu}m$ SiGe MMIC process, 4 types of antenna with $1{\times}1mm^2$ dimensions are fabricated. The on-wafer measurement in a microwave probe station is conducted to measure the input VSWR and antenna performance of the designed on-chip antenna. Performance evaluation results show that developed antennas can be easily integrated into one-chip RF transceiver for ubiquitous applications, including WPAN and human body communications.

Comparative Analysis and Improvement of Transmitting Efficiency in RF Wireless Charging System (RF무선충전 시스템 전송효율 개선 및 비교 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.102-107
    • /
    • 2021
  • In this paper, the measurements of received power was shown and compared in two developed 5.8GHz 25W wireless charging systems. One is the system using commercial transmission antenna, and the other is the system using transmission antenna combined with metamaterial. The system combined with metamaterial shows higher received power due to negative reflective index of metamaterial. In addition, a comparative analysis of the systems shows that the transmission efficiency in the systems can decrease the real gain of transmission antenna due to higher side robe of beam pattern. The side robe beams of transmitting antenna interferes transmitted beam with the reflected beams from the bottom region due to the side robes. The failure problems of the RF wireless charging systems are discussed and proposed in order to charge mobile devices through the RF wireless charging system.

An Eight-Element Compact Low-Profile Planar MIMO Antenna Using LC Resonance with High Isolation

  • Kwon, DukSoo;Lee, Soo-Ji;Kim, Jin-Woo;Ahn, ByungKuon;Yu, Jong-Won;Lee, Wang-Sang
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.194-197
    • /
    • 2016
  • An eight-element compact low-profile multi-input multi-output (MIMO) antenna is proposed for wireless local area network (WLAN) mobile applications. The proposed antenna consists of eight inverted-F antennas with an isolation-enhanced structure. By inserting the isolation-enhanced structure between the antenna elements, the slot and capacitor pair generates additional resonant frequency and decreases mutual coupling between the antenna elements. The overall size of the proposed antenna is only $33mm{\times}33mm$, which is integrated into an area of just $0.5{\lambda}{\times}0.5{\lambda}$. The proposed antenna meets 5-GHz WLAN standards with an operation bandwidth of 4.86 - 5.27 GHz and achieves an isolation of approximately 30 dB at 5 GHz. The simulated and measured results for the proposed antenna are presented and compared.

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

Design and Impact Testing of Cylindrical Composite Antenna Structures (원통형 복합재료 안테나의 설계 및 충격 실험에 관한 연구)

  • Lee, Sang-Min;Cho, Sang-Hyun;Lee, Chang-Woo;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.55-59
    • /
    • 2009
  • Microstrip antennas are low profile, are conformable to planar and nonplanar surfaces, are simple and inexpensive to manufacture, mechanically robust when mounted on rigid surfaces and are compatible with MMIC(Monolithic microwave integrated circuit) designs; they have been used in diverse communication systems. The rectangular microstrip patch antenna is designed for a central frequency of 12.5 GHz, and the final product is a $4{\times}1$ array antenna with curvature radius of 200 mm. The microstrip antenna is embedded in a sandwich structure which consists of skin and core material. After impact, the performance of damaged antenna is estimated by measuring the return loss and radiation pattern. The antenna performance was not affected by this impact damage.