• Title/Summary/Keyword: integrated antenna

Search Result 218, Processing Time 0.02 seconds

Design of Internal Integrated Microstrip Patch Antenna for PCS Handset (PCS 단말기용 내장형 마이크로스트립 패치 안테나 설계)

  • Cho Dong-Ki;Park Kyeng-Tea;Lee Ho-Sang;Lee Mun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.792-797
    • /
    • 2006
  • In this paper, an internal integrated microstrop patch for PCS handset is designed. To increase the bandwidth of microstrip patch antenna, a configuration of stacked type using parasitic element is used. Furthermore, to reduce the size of microstirip patch antenna, the main radiator in the substrate is shorted to the ground plane using five shorting-posts while three parasitic elements on the superstrate are also shorted to the ground plane using two shorting-posts respectively. The antenna bandwidth and radiation characteristics are calculated by HFSS 7.0 software, and compared with the experimental results. Experimental results show that the return loss is less than -10dB over the band of 1766MHz to 1900 MHz(134MHz) and the size of the fabricated microstrip patch antenna are $23\times20\times6.35mm$.

Design of Tx.Rx broadband antenna on LTCC at K/Ka band (LTCC 공정을 이용한 K/Ka 대역 송수신 겸용 이중 급전 안테나)

  • Cheon, Young-Min;Kim, Sung-Nam;Oh, Min-Seok;Choi, Jae-Ick;Pyo, Cheol-Sig;Lee, Jong-Moon;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2055-2057
    • /
    • 2004
  • The Ku band that has been using for the satellite communication and broadcasting would be changed to K/Ka bands. The satellite system requires the antenna structure to fabricate low loss and small antenna that is able to be integrated with other Rf circuits for both Rx and Tx. So we should design it with dual feed antennas at K/Ka bands, high isolation between two different feeds and broadband circular polarization. This paper proposes the LTCC(Low Temperature Co-fired Ceramic) process for integration with other Rf circuits and the Axial mode of the helical antenna to satisfy those requirements.

  • PDF

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.

Substrate Integrated Waveguide Power Divider Fed Dual-Dipole Array Antenna

  • Yu, Chen;Hong, Wei;Kuai, Zhenqi
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.171-174
    • /
    • 2010
  • In the paper, a printed dual-dipole array antenna is presented. A 4-way planar SIW power divider is adopted for feeding the array antenna. The dual-dipole is adopted as radiation elements which greatly improves the impedance band. The measured bandwidth larger than 31 % for VSWR$\leq$1.5 operating near 14 GHz is achieved and in agreement with the simulated results. The radiation E-plane and H-plane radiation pattern is presented in the paper. The radiation gain is also presented in the paper.

Design of Tx/Rx Broadband Antenna on LTCC at K/Ka Band (LTCC 공정을 이용한 K/Ka 대역 송수신 겸용 이중 급전 안테나)

  • 천영민;김성남;오민석;최재익;표철식;이종문;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.481-487
    • /
    • 2004
  • The Ku band that has been using for the satellite communication and broadcasting would be changed to K/Ka bands. The satellite system requires the antenna structure to fabricate low loss and small antenna that is able to be integrated with other Rf circuits for both Rx and Tx. So we should design it with dual feed antennas at K/Ka bands, high isolation between two different feeds and broadband circular polarization. This paper proposes the LTCC(Low Temperature Co-fired Ceramic) process for integration with other Rf circuits and the Axial mode of the helical antenna to satisfy those requirements.

Development of Single Feed Antenna for Integrated Public Network and 5G Network Frequency Dual-band Cover (통합 공공망과 5G 주파수 이중대역 커버용 단일 급전 안테나 개발)

  • Hong, Ji-Hun;Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.233-240
    • /
    • 2019
  • In this paper, due to the development of 5G communication technology, an antenna capable of covering both LTE and 5G bands is currently needed. In addition, we designed and manufactured a single feed antenna for the integrated public network (LTE) and 5G frequency dual band cover to satisfy the frequency bandwidth of more than 10% in each band. The antenna designed by adopting the dipole of the basic dipole antenna in a planar structure is a form in which the radiating element is vertically extended at all of the 700 MHz antennas and folded into a 'ㄷ' shape. In addition, the radiating element of the 700MHz band serves as a reflector of the 3.5GHz band radiating element. As a result, the 700 MHz band -10 dB bandwidth 104 MHz(14.8%) and 3.5 GHz band -10 dB bandwidth 660 MHz(18.8%) were obtained and the radiation pattern characteristic resulted in gains of 8.46 dBi, beam width E-plane 55°, H-plane 81° and 3.5 GHz bands 6.14 dBi, beamwidth E-plane 79°, H-Plane 49°.

Design of a compact quasi-Yagi antenna for portable RFID reader (휴대형 RFID 리더용 소형 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • In this paper, we considered a design method of a compact quasi-Yagi antenna for portable UHF RFID readers. The antenna consists of a dipole driver and a reflector printed on a dielectric substrate, and it is fed by a microstrip line. In order to reduce the antenna size, the dipole and reflector are bent and the balun between the feeding microstrip line and coplanar strip (CPS) line is integrated within the CPS line. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in UHF RFID band (902-928 MHz). The size of the fabricated antenna is $70mm{\times}75mm$, and the experiment results reveal a frequency band of 892-942 MHz for a voltage standing wave ratio < 2, a gain > 3.5 dBi, and a front-to-back ratio > 6.6 dB over the frequency band for UHF RFID.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Radiation Characteristics of a S / X Dual Broad Band Patch Antenna with Shared Aperture Structure (개구면 공유 구조를 가지는 S / X 이중 광대역 패치 안테나의 방사 특성)

  • Kwak, Eun-Hyuk;Lee, Yong-Seung;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.718-729
    • /
    • 2015
  • A S / X dual broad band patch antenna with shared aperture structure is fabricated. A $2{\times}2$ perforated patch is used for S-band operation and a $2{\times}2$ patch antenna array is integrated in the $2{\times}2$ perforation for X-band operation. The measurement results of a S / X dual broad band patch antenna with shared aperture structure show the broad band characteristics larger than 20 % in both bands.

Design of Transceiver Front-end using Circular Sector Patch Antenna (원형 섹터 패치 안테나를 사용한 트랜시버 전단부 설계)

  • ;Tatsuo Itohv
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.807-811
    • /
    • 2001
  • In this paper we proposed a dual-frequency circular sector microstrip antenna with orthogonal polarized modes and high isolation between the two feeding ports. And then we designed a transceiver operating at 5.6 GHz for transmitting and at 5.5 GHz for receiving. The good isolation provided by the proposed antenna is used as the basis for the transmit-receive filtering of transceiver. The operating frequencies and polarization characteristics of the proposed antenna is calculated by using a cavity model. The 5-parameters and radiation patterns of the antenna are measured. A power amplifier and a low noise amplifier are designed and integrated with antenna to make a transceiver, which has about 13dB transmitting gain and about 8㏈ receiving gain.

  • PDF