• 제목/요약/키워드: intake air

Search Result 600, Processing Time 0.023 seconds

A Cycle Simulation Method for an HCCI Engine using Detailed Chemical Kinetics (상세화학반응식을 이용한 HCCI 엔진의 성능 해석기법 연구)

  • 송봉하;김동광;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.51-58
    • /
    • 2003
  • A cycle simulation method is developed by coupling a commercial code, Ricardo's WAVE, with the SENKIN code from CHEMKIN packages to predict combustion characteristics of an HCCI engine. By solving detailed chemical kinetics the SENKIN code calculates the combustion products in the combustion chamber during the valve closing period, i.e. from IVC to EVO. Except the combustion chamber during the valve closing period the WAVE code solves thermodynamic status in the whole engine system. The cycle simulation of the complete engine system is made possible by exchanging the numerical solutions between the codes on the coupling positions of the intake port at IVC and of the exhaust port at EVO. This method is validated against the available experimental data from recent literatures. Auto ignition timing and cylinder pressure are well predicted for various engine operating conditions including a very high ECR rate although it shows a trend of sharp increase in cylinder pressure immediate after auto ignition. This trend is overpredicted especially for EGR cases, which may be due to the assumption of single-zone combustion model and the limit of the chemical kinetic model for the prediction of turbulent air-fuel mixing phenomena. A further work would be needed for the implementation of a multi-zone combustion model and the effect of turbulent mixing into the method.

A Study on the Spray and Combustion Characteristics of Direct-injection LPG (직접분사식 LPG의 분무 및 연소 특성에 관한 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2015
  • As advantages of LPG-DI engine, LPG is directly injected into combustion chamber during compression stroke to reduce compression temperature, prevent knock and spontaneous combustion, and adjust engine output using the amount of directly injected fuel, thereby reducing pumping loss caused by throttle valve. Stratified charge can be supplied nearby spark plugs to allow for overall lean combustion, which improves thermal efficiency and can cope with problems regarding emission regulations. In addition, it is characterized by free designing of intake manifold. Despite the fact that LPG-DI has many advantages as described above, there is lack of detailed investigation and study on spray characteristics, combustion flame characteristics, and ignition probability. In this study, a visualization experiment system that consists of visualization combustion chamber, air supply control system, emission control system, LPG fuel supply system, electronic control system and image data acquisition system was designed and manufactured. For supply of stratified charge in the combustion chamber, alignment of injector and spark plugs was made linear.

A Study on the Combustion and Smoke Emission Characteristics of the Natural Aspiration Type Diesel Engine (자연흡기식 디젤 기관의 연소와 매연 배출 특성에 관한 실험적 연구)

  • 정우인;박찬국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.70-83
    • /
    • 1997
  • We made a selection of engine operating conditions in the natural aspiration type diesel engine as load and speed. The effects on the power, smoke emission and cylinder pressure characteristics of these variations in operating conditions were observed experimentally. Also, the smoke emission was predicted by using the Arrhenius equation and empirical equation of the smoke emission was made. At the same time, the correlations, between the combustion and smoke emission characteristic were examined. From the above results, it is clear that to prevent power dropping and to decrease exhaust fume whin the conditions are changed, one should improve the intake system. To do this, the best way is to lower the air-fuel mixing ratio. We found that the parameters of the indicated mean effective pressure, maximum pressure and its location and combustion duration, etc. change the motion in accordance with the conditions described above. Also, we found that the variation of the pressure cycle comes from an amplified variation of the early part of process. From the analysis of comparing combustion and exhaust fume, the exhaust fume is produced at the latter time of combustion and decreased when the combustion ratio is higher. Also, we developed a special formula which can predict the exhaust fume value according to the engine load and speed.

  • PDF

Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model (저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석)

  • Kim, W.K.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

Internal Flow Aerodynamic Test of a Mach 5 Scramjet Engine (마하 5 스크램젯 엔진의 내부 유동 공력 시험)

  • Yang, In-Young;Lee, Yang-Ji;Kim, Young-Moon;Lee, Kyung-Jae;Kang, Sang-Hoon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.584-587
    • /
    • 2011
  • An internal flow aerodynamic test was performed for a Mach 5 scramjet engine. The test was done without fuel injection, as a preliminary test for the combustion test. Test engine is an engineering model with intake cross-section of $70mm{\times}200mm$ and total length of 1.7m. Test facility is a blowdown-type, high enthalpy, hypersonic facility. 19 pressures were measured through the holes on the model surface along the engine internal flow passage. It was found that the facility start is possible, and also supersonic flow is maintained inside the engine.

  • PDF

An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine (예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구)

  • Yoon, Seung-Hyun;Lee, Doo-Jin;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

A study on the usability of used vegetable oil as a diesel substitute in diesel engine (디젤기관의 대체연료로서 폐식용유의 유용성에 관한 연구)

  • O, Yeong-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 1998
  • In recently, lots of researcher have been attached to develope various alternative fuels and to use renewable fuels for solution of the exhaust emission problems. In this study, the usability of used vegetable oil as alternative fuel for diesel engines has been investigated. This paper was compared with the exhaust emissions and performance in diesel engine with used vegetable oil and conventional diesel fuel. Since the vegetable oil includes oxygen of about 10%, it influenced the combustion process strongly. So, the smoke emissions of used vegetable oil were exhausted to be lower than those of diesel fuel. Also, the used vegetable oil was much the same cycle to cycle variation with diesel fuel except $P_{(dP}$d.theta.)max/, but the cycle to cycle variation of used vegetable oil was reduced significantly by preheating of the fuel and swirling of the intake air. It was concluded that used vegetable oil could be utilized effectively as renewable fuel for diesel engine.e.

SESAME MEAL AS SOYBEAN MEAL SUBSTITUTE IN POULTRY DIETS II. LAYING HEN

  • Cheva-Isarakul, B.;Tangtaweewipat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.253-258
    • /
    • 1993
  • The study on the nutritive value and the potential use of two kinds (local vs. import) of sesame meal (SSM) in layer diets as substitute for soybean meal (SBM) at 25, 50, and 75% was carried out. Three hundred and thirty six layers were kept individually on a battery cage and fed isonitrogenous diets, 16% crude protein (CP), for 252 days. The local and the imported SSM contained on air dry basis 35.7 and 36.3% CP, 24.7 and 9.1% ether extract (EE), respectively. Their amino acid contents are all lower than those reported by NRC (1984). The local material contained remarkably lower lysine (0.44 vs. 0.94), methionine + cystine (1.06 vs. 1.75) and threonine (0.52 vs. 1.22) than the imported meal. Imported SSM could be substituted for SBM as high as 50% in layer ration without statistically adverse effect on egg production, feed intake, body weight gain, average egg weight and egg size, while local SSM was inferior to the control in all aspects. However, when production performance of the groups fed either kind of SSM was compared, no significant difference was found at the two lower substitution levels.

Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine (가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교)

  • Kim, Beom-Jun;Cho, Dae-Jin;Yoon, Suck-Ju
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF