• Title/Summary/Keyword: insulin signaling

Search Result 249, Processing Time 0.022 seconds

Effect of Lycopene on the Insulin-like Growth Factor-I Receptor Signaling Pathway in Human Colon Cancer HT-29 Cells (인간의 대장암 HT-29 세포주에서 라이코펜이 Insulin-like Growth Factor-I Receptor Signaling Pathway에 미치는 영향)

  • ;;;Frederick Khachik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.437-443
    • /
    • 2003
  • Epidemiological data suggest that lycopene has anticancer activities in humans. Insulin-like growth factor-I receptor (IGF-IR) is a transmembrane tyrosine kinase that mediates the biological actions of IGFs and may play an active role in cancer progression. Because our previous in vitro studies have indicated lycopene inhibits HT-29 cell growth, the aim of this study was to determine whether lycopene induces apoptotic cell death and the inhibitory effect of lycopene on HT-29 cell growth is related to changes in IGF-IR levels and the receptor's intracellular signalling pathways. HT-29 cells were incubated for 4 days in serum-free medium in the presence of 0, 25, 50, or 100 $\mu$M lycopene, and the DNA fragmentation assay was performed. Cells treated with lycopene produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. HT-29 cells were cultured for 4 days in serum-free medium in the presence of 0~100 $\mu$M lycopene and IGF-I (10nM) was added for 0~60 minutes immediately prior to lysate preparations. Western blot analysis of total lysates revealed that lycopene decreased the levels of IRS-1, Akt, phosphatidylinositol 3-kinase (PI3K), and IGF-IR $\beta$-subunit, and increased the levels of the IGF-IR precursor dose dependently. Lycopene also decreased IGF-I-induced phosphorylation of IGF-IR$\beta$, IRS-1 and Akt, which were, at least in part, due to decreased expression of these proteins. These results suggest that lycopene induces apoptosis of HT-29 cells by inhibiting IGF-IR signaling thereby interfering with an IGF-II-driven autocrine growth loop, which is known to exist in this cell line.

Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway

  • Ni, Jingyu;Liu, Zhihao;Jiang, Miaomiao;Li, Lan;Deng, Jie;Wang, Xiaodan;Su, Jing;Zhu, Yan;He, Feng;Mao, Jingyuan;Gao, Xiumei;Fan, Guanwei
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.235-247
    • /
    • 2022
  • Background: Ginsenoside Rg3 is one of the main active ingredients in ginseng. Here, we aimed to confirm its protective effect on the heart function in transverse aortic coarctation (TAC)-induced heart failure mice and explore the potential molecular mechanisms involved. Methods: The effects of ginsenoside Rg3 on heart and mitochondrial function were investigated by treating TAC-induced heart failure in mice. The mechanism of ginsenoside Rg3 for improving heart and mitochondrial function in mice with heart failure was predicted through integrative analysis of the proteome and plasma metabolome. Glucose uptake and myocardial insulin sensitivity were evaluated using micro-positron emission tomography. The effect of ginsenoside Rg3 on myocardial insulin sensitivity was clarified by combining in vivo animal experiments and in vitro cell experiments. Results: Treatment of TAC-induced mouse models with ginsenoside Rg3 significantly improved heart function and protected mitochondrial structure and function. Fusion of metabolomics, proteomics, and targeted metabolomics data showed that Rg3 regulated the glycolysis process, and Rg3 not only regulated glucose uptake but also improve myocardial insulin resistance. The molecular mechanism of ginsenoside Rg3 regulation of glucose metabolism was determined by exploring the interaction pathways of AMPK, insulin resistance, and glucose metabolism. The effect of ginsenoside Rg3 on the promotion of glucose uptake in IR-H9c2 cells by AMPK activation was dependent on the insulin signaling pathway. Conclusions: Ginsenoside Rg3 modulates glucose metabolism and significantly ameliorates insulin resistance through activation of the AMPK pathway.

cAMP antagonizes ERK-dependent antiapoptotic action of insulin

  • Cui, Zhi Gang;Hong, Na-Young;Guan, Jian;Kang, Hee-Kyoung;Lee, Dae-Ho;Lee, Young-Ki;Park, Deok-Bae
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • Insulin has antiapoptotic activity in various cell types. However, the signaling pathways underlying the antiapoptotic activity of insulin is not yet known. This study was conducted to determine if cAMP affects the antiapoptotic activity of insulin and the activity of PI3K and ERK in CHO cells expressing human insulin receptors (CHO-IR). Insulin-stimulated ERK activity was completely suppressed by cAMP-elevating agents like as pertussis toxin (Ptx) and cholera toxin (Ctx) after 4 h treatment. Insulin-stimulated PKB/Akt activity was not affected at all. Ptx treatment together with insulin increased the number of apoptotic cells and the degree of DNA fragmentation. Ctx or 8-br-cAMP treatment also increased the number of apoptotic cells and stimulated the cleavage of caspase-3 and the hydrolysis of PARP. Taken together, cAMP antagonizes the antiapoptotic activity of insulin and the main target molecule of cAMP in this process is likely ERK, not PI3K-dependent PKB/Akt.

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts

  • Xiong, Qi;Deng, Chang-Yan;Chai, Jin;Jiang, Si-Wen;Xiong, Yuan-Zhu;Li, Feng-E;Zheng, Rong
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • PI(3,4,5)$P_3$ produced by the activated PI3-kinase is a key lipid second messenger in cell signaling downstream of insulin. Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5) $P_3$ to PI(3,4)$P_2$, negatively regulates the insulin-induced glycogen synthesis in skeletal muscle. However the mechanism by which this occurs remains unclear. To elucidate the function of SKIP in glycogen synthesis, we employed RNAi techniques to knockdown the SKIP gene in differentiating C2C12 myoblasts. Insulininduced phosphorylation of Akt (protein kinase B) and GSK-3$\beta$ (Glycogen synthase kinase), subsequent dephosphorylation of glycogen synthase and glycogen synthesis were increased by inhibiting the expression of SKIP, whereas the insulin-induced glycogen synthesis was decreased by overexpression of WT-SKIP. Our results suggest that SKIP plays a negative regulatory role in Akt/ GSK-3$\beta$/GS (glycogen synthase) pathway leading to glycogen synthesis in myocytes.

Insulin Like Growth Factor Binding Protein-5 Regulates Excessive Vascular Smooth Muscle Cell Proliferation in Spontaneously Hypertensive Rats via ERK 1/2 Phosphorylation

  • Lee, Dong Hyup;Kim, Jung Eun;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • Insulin-like growth factor binding proteins (IGFBPs) are important components of insulin growth factor (IGF) signaling pathways. One of the binding proteins, IGFBP-5, enhances the actions of IGF-1, which include the enhanced proliferation of smooth muscle cells. In the present study, we examined the expression and the biological effects of IGFBP-5 in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The levels of IGFBP-5 mRNA and protein were found to be higher in the VSMC from SHR than in those from WKY. Treatment with recombinant IGFBP-5-stimulated VSMC proliferation in WKY to the levels observed in SHR. In the VSMCs of WKY, incubation with angiotensin (Ang) II or IGF-1 dose dependently increased IGFBP-5 protein levels. Transfection with IGFBP-5 siRNA reduced VSMC proliferation in SHR to the levels exhibited in WKY. In addition, recombinant IGFBP-5 significantly up-regulated ERK1/2 phosphorylation in the VSMCs of WKY as much as those of SHR. Concurrent treatment with the MEK1/2 inhibitors, PD98059 or U0126 completely inhibited recombinant IGFBP-5-induced VSMC proliferation in WKY, while concurrent treatment with the phosphatidylinositol-3 kinase inhibitor, LY294002, had no effect. Furthermore, knockdown with IGFBP-5 siRNA inhibited ERK1/2 phosphorylation in VSMC of SHR. These results suggest that IGFBP-5 plays a role in the regulation of VSMC proliferation via ERK1/2 MAPK signaling in hypertensive rats.

C/EBP$\beta$ and Nrf2-Mediated GSTA2 Induction by $\alpha$-Lipoic acid, an Insulin-Sensitizing Agent that has Antioxidant and Prooxidant Activities

  • Ki, Sung-Hwan;Cho, Il-Je;Kim, Sang-Geon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.82.1-82.1
    • /
    • 2003
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by enhanced expression of phase II detoxifying genes including glutathione S-transferases. ${\alpha}$-Lipoic acid, which exerts prooxidant or antioxidant activities, has been shown to activate the insulin signaling pathway and thus to induce insulin-like actions via PI3-kinase and Akt. Our previous studies have shown that PI3-kinase plays an essential role in Nrf2-or C/EBP${\beta}$-mediated glutathione S-transferase A2 (GSTA2) induction. (omitted)

  • PDF

Mechanisms underlying diabetes-induced bone loss

  • Ju Han Song;Xianyu Piao;Jeong-Tae Koh
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.27-33
    • /
    • 2024
  • Diabetes, a chronic hyperglycemic condition, is caused by insufficient insulin secretion or functional impairment. Long-term inadequate regulation of blood glucose levels or hyperglycemia can lead to various complications, such as retinopathy, nephropathy, and cardiovascular disease. Recent studies have explored the molecular mechanisms linking diabetes to bone loss and an increased susceptibility to fractures. This study reviews the characteristics and molecular mechanisms of diabetes-induced bone disease. Depending on the type of diabetes, changes in bone tissue vary. The molecular mechanisms responsible for bone loss in diabetes include the accumulation of advanced glycation end products (AGEs), upregulation of inflammatory cytokines, induction of oxidative stress, and deficiencies in insulin/IGF-1. In diabetes, alveolar bone loss results from complex interactions involving oral bacterial infections, host responses, and hyperglycemic stress in periodontal tissues. Therapeutic strategies for diabetes-induced bone loss may include blocking the AGEs signaling pathway, decreasing inflammatory cytokine activity, inhibiting reactive oxygen species generation and activity, and controlling glucose levels; however, further research is warranted.

Exercise Intervention on Blood Glucose Control of Type 2 Diabetes with Obesity : A Systematic Review (비만을 동반한 제 2형 당뇨병환자의 혈당 조절을 위한 운동 중재 : 체계적 문헌고찰)

  • Jung, Su-Ryun;Kim, Wan-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.11-26
    • /
    • 2018
  • PURPOSE: The aim of this study was to review the effects of exercise intervention on blood glucose control in obese type 2 diabetic patients. METHODS: The PubMed and KERISS search engines were used and 61 papers that met the key questions were selected. RESULTS: Exercise is an effective intervention for the control of blood glucose in type 2 diabetic patients because it does not impair glucose transport in the skeletal muscle induced by muscle contractions. Insulin resistance, which is characteristic of type 2 diabetes, is caused by decreased insulin sensitivity or insulin responsiveness. Acute exercise improves the glucose metabolism by increasing the insulin-independent signaling pathways and insulin sensitivity in the skeletal muscle, and regular long-term exercise improves the skeletal muscle insulin responsiveness and systemic glucose metabolism by increasing the mitochondrial and GLUT4 protein expression in the skeletal muscle. CONCLUSION: The improvement of the glucose metabolism through exercise shows a dose-response pattern, and if exercise consumes the same number of calories, high intensity exercise will be more effective for the glucose metabolism. On the other hand, it is practically difficult for a patient with obese type 2 diabetes to control their blood glucose with high intensity or long-term exercise. Therefore, it will be necessary to study safe adjuvants (cinnamic acid, lithium) that can produce similar effects to high-intensity and high-volume exercises in low-intensity and low-volume exercises.

Role of $Ca^{2+}$ in the Stimulation of Glucose Transport by Insulin in Adipocytes

  • Chang, Sung-Hoe;Jang, Yeon-Jin;Park, Kun-Koo;Kim, Ghi-Su;Ryu, Hee-Jeong;Park, Chun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.357-364
    • /
    • 1999
  • We investigated the role of $Ca^{2+}$ and protein kinases/phosphatases in the stimulatory effect of insulin on glucose transport. In isolated rat adipocytes, the simple omission of $CaCl_2$ from the incubation medium significantly reduced, but did not abolish, insulin-stimulated 2-deoxy glucose (2-DG) uptake. Pre-loading adipocytes with intracellular $Ca^{2+}$ chelator, 5,5'-dimethyl bis (o-aminophenoxy)ethane-N,N,N'N' tetraacetic acetoxymethyl ester (5,5'-dimethyl BAPTA/AM) completely blocked the stimulation. Insulin raised intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ about 1.7 times the basal level of $72{\pm}5$ nM, and 5,5'-dimethyl BAPTA/AM kept it constant at the basal level. This correlation between insulin-induced increases in 2-DG uptake and $[Ca^{2+}]_i$ indicates that the elevation of $[Ca^{2+}]_i$ may be prerequisite for the stimulation of glucose transport. Studies with inhibitors (ML-9, KN-62, cyclosporin A) of $Ca^{2+}-calmodulin$ dependent protein kinases/phosphatases also indicate an involvement of intracellular $Ca^{2+}.$ Additional studies with okadaic acid and calyculin A, protein phosphatase-1 (PP-1) and 2A (PP-2A) inhibitors, indicate an involvement of PP-1 in insulin action on 2-DG uptake. These results indicate an involvement of $Ca^{2+}-dependent$ signaling pathway in insulin action on glucose transport.

  • PDF