• 제목/요약/키워드: insulin receptor substrate 1

검색결과 53건 처리시간 0.025초

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Insulin Receptor Substrate 1의 세린731 인산화 억제를 통한 살리실산의 인슐린저항성 개선효과 기전 (Salicylate Enhances Insulin Signaling by Preventing Ser731 Phosphorylation of Insulin Receptor Substrate 1)

  • 이용희
    • 약학회지
    • /
    • 제52권3호
    • /
    • pp.182-187
    • /
    • 2008
  • Salicylate (SA) was shown to alleviate insulin resistance. Here, we showed that SA inhibited Ser731 phosphorylation of insulin receptor substrate 1 (IRS1) and S6 kinase activation, and enhanced tyrosine phosphorylation of IRS1 in response to insulin or amino acid. Experiments using a cJun N-terminal kinase (JNK)-deficient cell and an IRS1 JNK-binding mutant showed that JNK is not required for Ser731 phosphorylation. A two-week treatment of obese mice with SA resulted in decreased Ser731 phosphorylation and enhanced insulin signaling. These results suggest that SA enhances insulin signaling by inhibiting Ser731 phosphorylation of IRS1.

Induction of insulin receptor substrate-2 expression by Fc fusion to exendin-4 overexpressed in E. coli: a potential long-acting glucagon-like peptide-1 mimetic

  • Kim, Jae-Woo;Kim, Kyu-Tae;Ahn, You-Jin;Jeong, Hee-Jeong;Jeong, Hyeong-Yong;Ryu, Seung-Hyup;Lee, Seung-Yeon;Lee, Chang-Woo;Chung, Hye-Shin;Jang, Sei-Heon
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.146-149
    • /
    • 2010
  • Exendin-4 (Ex-4), a peptide secreted from the salivary glands of the Gila monster lizard, can increase pancreatic $\beta$-cell growth and insulin secretion by activating glucagon-like peptide-1 receptor. In this study, we expressed a fusion protein consisting of exendin-4 and the human immunoglobulin heavy chain (Ex-4/IgG-Fc) in E. coli and explored its potential therapeutic use for the treatment of insulin-resistant type 2 diabetes. Here, we show that the Ex-4/IgG-Fc fusion protein induces expression of insulin receptor substrate-2 in rat insulinoma INS-1 cells. Our findings therefore suggest that Ex-4/IgG-Fc overexpressed in E. coli could be used as a potential, long-acting glucagon-like peptide-1 mimetic.

3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과 (Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes)

  • 이현아;한지숙
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.859-867
    • /
    • 2023
  • 루페올은 5환성 트리테르펜의 일종으로 많은 질병에 치료 효과가 있는 것으로 보고되었으나, 인슐린 저항성에 미치는 영향은 명확하지 않다. 본 연구에서는 3T3-L1 지방세포에서 루페올의 IRS-1 인산화 억제능을 통해 인슐린 저항성 개선효과를 조사하였다. 3T3-L1 세포를 배양하고 TNF-α를 24시간 동안 처리하여 인슐린 저항성을 유도하였다. 서로 다른 농도의 루페올(15, 30 μM) 또는 100 nM의 rosiglitazone을 처리한 세포를 배양한 후, 용해된 세포를 이용하여 western blotting을 시행하였다. 실험결과 루페올은 지방세포에서 TNF-α에 의해 유발되는 인슐린 신호전달의 음성 조절자와 염증 활성화 단백질 kinase에 대한 개선 효과를 나타냈다. 인슐린 신호전달의 음성 조절자인 PTP-1B와 JNK의 활성 및 IKK와 염증활성화 단백질키나아제의 활성을 억제하였다. 또한, 루페올은 IRS-1의 serine 인산화는 하향 조절하고 tyrosine 인산화는 상향 조절하였다. 그 후, 하향 조절된 PI3K/AKT 경로가 활성화되고, GLUT 4의 세포막 전위가 자극되어, 결과적으로 인슐린 저항성이 유도된 3T3-L1 지방세포에서에서 세포내 포도당 흡수가 증가하였다. 본 연구결과, 루페올은 3T3-L1 지방세포에서 인슐린 신호전달 및 염증 활성화 단백질 kinsase들의 음성 조절인자를 억제하여, IRS-1의 serine 인산화를 하향 조절함으로써 TNF-α 유발 인슐린 저항성을 개선할 수 있을 것으로 사료된다.

Retinoid X Receptor α Overexpression Alleviates Mitochondrial Dysfunction-induced Insulin Resistance through Transcriptional Regulation of Insulin Receptor Substrate 1

  • Lee, Seung Eun;Koo, Young Do;Lee, Ji Seon;Kwak, Soo Heon;Jung, Hye Seung;Cho, Young Min;Park, Young Joo;Chung, Sung Soo;Park, Kyong Soo
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.356-361
    • /
    • 2015
  • Mitochondrial dysfunction is associated with insulin resistance and diabetes. We previously showed that retinoid X receptor ${\alpha}$ ($RXR{\alpha}$) played an important role in transcriptional regulation of oxidative phosphorylation (OXPHOS) genes in cells with mitochondrial dysfunction caused by mitochondrial DNA mutation. In this study, we investigated whether mitochondrial dysfunction induced by incubation with OXPHOS inhibitors affects insulin receptor substrate 1 (IRS1) mRNA and protein levels and whether $RXR{\alpha}$ activation or overexpression can restore IRS1 expression. Both IRS1 and $RXR{\alpha}$ protein levels were significantly reduced when C2C12 myotubes were treated with the OXPHOS complex inhibitors, rotenone and antimycin A. The addition of $RXR{\alpha}$ agonists, 9-cis retinoic acid (9cRA) and LG1506, increased IRS1 transcription and protein levels and restored mitochondrial function, which ultimately improved insulin signaling. $RXR{\alpha}$ overexpression also increased IRS1 transcription and mitochondrial function. Because $RXR{\alpha}$ overexpression, knock-down, or activation by LG1506 regulated IRS1 transcription mostly independently of mitochondrial function, it is likely that $RXR{\alpha}$ directly regulates IRS1 transcription. Consistent with the hypothesis, we showed that $RXR{\alpha}$ bound to the IRS1 promoter as a heterodimer with peroxisome proliferator-activated receptor ${\delta}$ ($PPAR{\delta}$). These results suggest that $RXR{\alpha}$ overexpression or activation alleviates insulin resistance by increasing IRS1 expression.

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Insulin Cannot Activate Extracellular-signal-related Kinase Due to Inability to Generate Reactive Oxygen Species in SK-N-BE(2) Human Neuroblastoma Cells

  • Hwang, Jung-Jin;Hur, Kyu Chung
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.280-287
    • /
    • 2005
  • The insulin-mediated Ras/mitogen-activated protein (MAP) kinase cascade was examined in SK-N-BE(2) and PC12 cells, which can and cannot produce reactive oxygen species (ROS), respectively. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) was much lower in SK-N-BE(2) cells than in PC12 cells when the cells were treated with insulin. The insulin-mediated interaction of IRS-1 with Grb2 was observed in PC12 but not in SK-N-BE(2) cells. Moreover, the activity of extracellular-signal-related kinase (ERK) was much lower in SK-N-BE(2) than in PC12 cells when the cells were treated with insulin. Application of exogenous $H_2O_2$ caused increased tyrosine phosphorylation and Grb2 binding to IRS-1 in SK-N-BE(2) cells, while exposure to an $H_2O_2$ scavenger (N-acetylcysteine) or to a phophatidylinositol-3 kinase inhibitor (wortmannin), and expression of a dominant negative Rac1, decreased the activation of ERK in insulin-stimulated PC12 cells. These results indicate that the transient increase of ROS is needed to activate ERK in insulin-mediated signaling and that an inability to generate ROS is the reason for the insulin insensitivity of SK-N-BE(2) cells.

Association of Insulin Receptor Substrate-1 G972R Variant with Non-small Cell Lung Cancer Risk

  • Lee, Chang Youl;Ahn, Chul Min;Jeon, Jeong Hee;Kim, Hyung Jung;Kim, Se Kyu;Chang, Joon;Kim, Sung Kyu;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제67권1호
    • /
    • pp.8-13
    • /
    • 2009
  • Background: The insulin receptor substrate-1 (IRS-1) is the primary docking molecule for the insulin-like growth factor I receptor (IGF-IR), and is required for activation of the phosphatidylinositol 3'-kinase (PI3K) pathway. IRS-1 activation of the (PI3K) pathway regulates IGF-mediated survival, enhancement of cellular motility and apoptosis. Therefore, we attempted to ascertain whether IRS-1 genetic variations affect an individual's risk for non-small cell lung cancer (NSCLC). Methods: Two-hundred and eighteen subjects, either diagnosed with NSCLC or control subjects, were matched by age, gender and smoking status. Genomic DNA from each subject was amplified by PCR and analyzed according to the restriction fragment length polymorphism (RFLP) profile to detect the IRS-1 G972R polymorphism. Results: The frequencies of each polymorphic variation, in the control population, were as follows: GG=103 (94.5%) and GR=6 (5.5%); for the NSCLC subjects, the genotypic frequencies were as follows: GG=106 (97.2%) and GR=3 (2.8%). We could not demonstrate statistically significant differences in the genotypic distribution between the NSCLC and the control subjects (p=0.499, Fisher's Exact test). The relative risk of NSCLC, associated with the IRS-1 G972R polymorphic variation, was 1.028 (95% CI; 0.63~9.90). In addition, we found no differences between polymorphic variants with regard to the histological subtype of NSCLC. Conclusion: We did not observe any noteworthy differences in the frequency of the IRS-1 G972R polymorphism in NSCLC patients, compared to control subjects. These results suggest suggesting that, in our study population, the IRS-1 G972R polymorphism does may not appear to be associated with an increased risk of NSCLC.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • 제19권4호
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells

  • Dahae Lee;Sungyoul Choi;Ki Sung Kang
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.572-582
    • /
    • 2023
  • Background: Free fatty acid-induced lipotoxicity is considered to play an important role in pancreatic β-cell dysfunction. The effect of ginsenosides on palmitic acid-induced pancreatic beta-cells cell death and failure of glucose-stimulated secretion of insulin (GSIS) was evaluated in this study. Methods: Enzyme-linked immunosorbent assay kit for a rat insulin was used to quantify glucose-stimulated insulin secretion. Protein expression was examined by western blotting analysis. Nuclear condensation was measured by staining with Hoechst 33342 stain. Apoptotic cell death was assessed by staining with Annexin V. Oil Red O staining was used to measure lipid accumulation. Results: We screened ginsenosides to prevent palmitic acid-induced cell death and impairment of GSIS in INS-1 pancreatic β-cells and identified protopanaxadiol (PPD) as a potential therapeutic agent. The protection effect of PPD was likely due to a reduction in apoptosis and lipid accumulation. PPD attenuated the palmitic acid-induced increase in the levels of B-cell lymphoma-2-associated X/B-cell lymphoma 2, poly (ADP-ribose) polymerase and cleaved caspase-3. Moreover, PPD prevented palmitic acid-induced impairment of insulin secretion, which was accompanied by an increase in the activation of phosphatidylinositol 3-kinase, peroxisome proliferator-activated receptor γ, insulin receptor substrate-2, serine-threonine kinase, and pancreatic and duodenal homeobox-1. Conclusion: Our results suggest that the protective effect of PPD on lipotoxicity and lipid accumulation induced by palmitic acid in pancreatic β-cells.