• Title/Summary/Keyword: insulin

Search Result 2,884, Processing Time 0.037 seconds

Effect of Undaria pinnatifida Extract on Insulin Secretion from the Pancreas of Diabetic Rats

  • Nam, Jeong-Su;Lee, Won-Joon;Choi, Hyun-Ju
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • We found previously that Undaria pinnatifida extract has an effect of lowering blood glucose levels in diabetic rats. Therefore, an effect of Undaria pinnatifida extract on the insulin secretion directly from the pancreas was examined in this study. Neonatal diabetes were induced by intraperitoneal injection of Streptozotocin (100 mg/kg body weight) at age of day 1. Rats were fed a rodent pellet diet until they were grown to adults (age of 7 weeks). Rats having a fasting serum glucose level over 250 mg/dL were used in this feeding study and they were divided into two diet groups as follows; a diet with Undaria pinnatifida extract (5%) and a diet without this extract (control group). Fasting (12 hr) blood glucose and serum insulin levels were measured before and after feeding a diet with Undaria pinnatifida extract for 4 weeks. At the last day of feeding, in vitro pancreas perfusion was performed. Pancreas was stimulated with a perfusate without glucose during a period of 0~10 minutes and with a perfusate containing 200 mg/dL glucose during a period of 11~40 minutes. Insulin amount was measured using a radioimmuno assay. In results, amount of the insulin secreted from the pancreas in the diabetic rats fed Undaria pinnatifida extract was significantly greater than that in the diabetic control group during the periods of the equilibration period (0~10 min) and the first phase (11~20 min) of the insulin secretion (P<0.05). It is concluded that Undaria pinnatifida extract increases insulin secretion from the pancreas in the neonatal diabetic rats. Therefore, the blood glucose lowering effect of the Undaria pinnatifida extract may be elucidated by mechanisms with promoted insulin secretion from the pancreas in diabetic rats.

  • PDF

Post-prandial decrease in plasma growth hormone levels is not related to the increase in plasma insulin levels in goats

  • Nishihara, Koki;Kobayashi, Ryoko;Suzuki, Yutaka;Sato, Katsuyoshi;Katoh, Kazuo;Roh, Sanggun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1696-1701
    • /
    • 2017
  • Objective: In the present study, we examined whether the post-prandial reduction in plasma growth hormone (GH) levels is related to the increase in plasma insulin levels in ruminants. Methods: We performed two experiments: intravenous bolus injection of insulin (0.2 IU/kg body weight) or glucose (1.0 mmol/kg body weight) was administered to increase the plasma insulin levels in male Shiba goats. Results: In the insulin injection experiment, significant (p<0.05) increase in GH concentrations was observed, 15 to 20 min after the injection; it was accompanied with a significant (p<0.01) increase in cortisol concentrations at 45 to 90 min, when compared to the concentrations in the saline-injected controls. The glucose injection significantly (p<0.05) increased the plasma GH concentration at 20 to 45 min; this was not accompanied by significantly higher cortisol concentrations than were observed for the saline-injected control. Hypoglycemia induced by the insulin injection, which causes the excitation of the adrenal cortex, might be involved in the increase in insulin levels. Conclusion: Based on these results, we conclude that post-prandial increases in plasma insulin or glucose levels do not induce a decrease in GH concentration after feeding in the ruminants.

Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women

  • Kim, Ji-Hye;Lee, Sun-Ju
    • Nutrition Research and Practice
    • /
    • v.6 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Zinc deficiency is known to be associated with insulin resistance in obese individuals. This study was performed to evaluate the effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Forty obese women (body mass index (BMI) ${\geq}25kg/m^2$) aged 19-28 years were recruited for this study. Twenty women of the study group took 30 mg/day of supplemental zinc as zinc gluconate for 8 weeks and 20 women of control group took placebo. Usual dietary zinc intake was estimated from 3-day diet records. Insulin resistances were measured using Homeostasis model assessment (HOMA) indices, and insulin sensitivities Matsuda indices, which were calculated using oral glucose tolerance test data. Metabolic risk factors, such as waist circumference, blood pressure, fasting glucose, triglyceride, high density lipoprotein (HDL) cholesterol, and adipocyte hormones such as leptin, and adiponectin were also measured. At the beginning of study, dietary zinc averaged 7.31 mg/day and serum zinc averaged $12.98{\mu}mol/L$ in the study group. Zinc supplementation increased serum zinc by 15% and urinary zinc by 56% (P < 0.05). HOMA values tended to decrease and insulin sensitivity increased slightly in the study group, but not significantly so. BMI, waist circumference, blood pressure, blood glucose, triglyceride, HDL cholesterol, and adipocyte hormones did not change in either the study or control group. These results suggest that zinc status may not affect insulin resistance and metabolic risk factors in obese Korean women. Further research is required on a larger cohort with a longer follow-up to determine the effects of zinc status on insulin resistance and metabolic variables.

Design and Synthesis of Devices Releasing Insulin in response to Redox Reaction of Glucose (Glucose의 Redox 반응에 의한 인슐린 방출 Device의 설계와 합성)

  • Chung, Dong-June;Ito, Yoshihiro;Imanishi, Yukio;Shim, Jyong-Sup
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1990
  • New insulin-releasing system on the basis of the redox reaction of glucose was synthesized by immobilizing insulin through a disulfide bond(5, 5'-dithiobis(2-nitrobenzoic acid) to polymer membrane(poly(methyl methacrylate)) and enzyme(glucose oxidase). The disulfide bonds were cleaved upon oxidation of glucose with glucose dehydrogenase and glucose oxidase, releasing insulin from the membrane and enzyme. Sensitivity to glucose concentration was enhanced by coimmobilization of enzyme cofactors(nicotinamide adenin dinucleotide and flavin adenin dinucleotide) acting as electron mediator(for the membrane device), and further enhanced by direct immobilization of insulin on glucose oxidase(for the protein device). Both systems were specific to glucose, and the released insulin was indistinguishable from native insulin. The biological activity of released insulin was 81% of native insulin.

  • PDF

Analysis of Motivational Interviewing to Overcome Psychological Insulin Resistance of Type 2 Diabetes (제2형 당뇨병 환자의 심리적 인슐린저항성 극복을 위한 동기강화상담 분석)

  • Lee, Hyunjin;Cho, JeongHwa;Song, Youngshin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.485-493
    • /
    • 2018
  • This study analyzed the motivational interviewing of type 2 diabetes patients in order to understand the difficulties and motivations associated with starting insulin treatment in psychosomatic insulin-resistant patients. The method used the consistent comparative analysis. The results of study were as follows: building relationships, focusing (Self-explore of problems with diabetes self-management, Recognizing the limitations of diabetes management, Concerns about complications, Imagine the future), inducing (Imagine the expected benefits and disadvantages of insulin administration, Discovering the benefits of insulin, Changes in thinking about starting insulin therapy), planning (Show specific curiosity about change, Planning change), maintaining change behavior (Keeping change confident), and evaluating. This study will contribute to understanding patients with type 2 diabetes with psychological insulin resistance. It may also provide implications for professionals helping these subjects.

Effects of Growth Factors and Gut Regulatory Peptides on Glucose Uptake in HC 11 Mouse Mammary Epithelial Cells

  • Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1690-1694
    • /
    • 2003
  • The large and rapid changes of glucose utilization in lactating mammary tissue in response to changes in nutritional state must be largely related by external signal of insulin. This also must be related with the quantity and composition of the diet in vivo. To characterize the mode of growth factors and gut regulatory peptides with insulin, in vitro experiment was conducted with HC11 cells. All the growth factor alone and the combinations of growth factors significantly (p<0.05) increased in glucose uptake. Insulin, EGF and IGF-1 exhibited a stimulation of glucose uptake for at least 24 h. Furthermore, the highest (p<0.05) synergistic effect was shown in EGF plus IGF-1 and the second synergistic effect in insulin plus EGF while no synergistic effect was found between insulin and IGF-1. However, the gut regulatory peptides neither potentiated nor inhibited the action of insulin on glucose uptake. Although growth factors did not modulates glucose uptake via increasing the rate of translation of the GLUT1 protein, RT-PCR analysis indicated that the growth factors significantly (p<0.05) increased the expression of GLUT1. The growth factors are therefore shown to be capable of modulating glucose uptake by transcription level with insulin in HC 11 cells.

Hormonal Regulation of Acetyl-CoA Carboxylase Promoter I Activity in Rat Primary Hepatocytes (흰쥐의 간세포에서 호르몬에 의한 Acetyl-CoA Carboxylase Promoter I Activity 조절에 대한 연구)

  • 이막순;양정례;김윤정;김영화;김양하
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.207-212
    • /
    • 2002
  • Acetyl-CoA carboxylase (ACC) is the enzyme that controls no devo fatty acid biogynthesis, and this enzyme catalyzes the carboxylation pathway of acetyl-CoA to malonyl-CoA. Acetyl-CoA carboxylase gene expression was regulated by nutritional and hormonal status. The present study was performed to identify the regulation mechanism of ACC gene promoter I. The fragments of ACC promoter I -1.2-kb region wert recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocytes from the rat were used to investigate the hormonal regulation of ACC promoter I activity. ACC PI (-1.2)/Luc plasmid was trtransferred into primary hepatocytes using lipofectin. Activity of luciferase was increased two-fold by 10-9M, three-fold by 10-8M, 10-6M, 3.5-fold by 10-6M, and 4.5-fold by 10-7M insulin treatment, respectively. In the presence of dexamethasone (1 $\mu$M), the effects of insulin increased about 1.5-fold, showing the additional effects of dexamethasone. Moreover, the activity of luciferase increased with insulin+dexamethasone, insulin+T3, dexamethasone+T3, and dexamethasone+insulin+T3 treatment approximately 6-, 4-, 6.5-, and 10-fold, respectively. Therefore it can be postulated that 1) these hormones coordinately regulate acetyl-CoA caroxylase gene expression via regulation of promoter activity, 2) the -1.2-kb region of ACC promoter I may have the response element sequences for insulin, dexamethasone, and T3.

Effects of Dietary Omega-3 Fatty Fish on Serum Insulin and Glucose in Normal Subjects (Omega-3 Fatty Fish의 섭취가 정상인의 Serum Insulin, Glucose에 미치는 영향)

  • 김영선
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1995
  • The purpose of this study was to Investigate the response of fasting serum glucose and basal insulin to dietary omega-3 fatty fish in normal subjects. Nineteen healthy female volunteer subjects were divided into two groups, depending on fish preference test. Low ap3 fatty acid group for 7 days received a experimental Inlet containing mackeral fish 100g. Calorie intake was 1780 kcal /day. The average 4ally u-3 fatty acid consumption from fish was 3.87g /day (1.03g EPA, 2.849 DHA) . High n-3 fatty acid group was given 7.74g maine u-3 fatty acid (200g mackeral fish) consisting of 2.06g EP45.68g DHA. Calorie intake was 1815 local /day Fasting blond serum glucose, insulin levels were measured at baseline, 7days after experimental diet. In the beginning the levels of fasting serum glucose, basal insulin were not different between both groups. There were no significant changes in fasting serum glucose, insulin levels by experimental diets. These data indicate that marine ar3 fatty acid consumption have no deleterious effect on glycemic control in normal subjects.

  • PDF

Dietary Protein Restriction Alters Lipid Metabolism and Insulin Sensitivity in Rats

  • Kang, W.;Lee, M.S.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1274-1281
    • /
    • 2011
  • Dietary protein restriction affects lipid metabolism in rats. This study was performed to determine the effect of a low protein diet on hepatic lipid metabolism and insulin sensitivity in growing male rats. Growing rats were fed either a control 20% protein diet or an 8% low protein diet. Feeding a low protein diet for four weeks from 8 weeks of age induced a fatty liver. Expression of acetyl-CoA carboxylase, a key lipogenic enzyme, was increased in rats fed a low protein diet. Feeding a low protein diet decreased very low density lipoprotein (VLDL) secretion without statistical significance. Feeding a low protein diet down-regulated protein expression of microsomal triglyceride transfer protein, an important enzyme of VLDL secretion. Feeding a low protein diet increased serum adiponectin levels. We performed glucose tolerance test (GTT) and insulin tolerance test (ITT). Both GTT and ITT were increased in protein-restricted growing rats. Our results demonstrate that dietary protein restriction increases insulin sensitivity and that this could be due to low-protein diet-mediated metabolic adaptation. In addition, increased adiponectin levels may influences insulin sensitivity. In conclusion, dietary protein restriction induces a fatty liver. Both increased lipogenesis and decreased VLDL secretion has contributed to this metabolic changes. In addition, insulin resistance was not associated with fatty liver induced by protein restriction.

Effect of n-3 Polyunsaturated Fatty Acids on Glucose Uptake of Soleus Muscle in NIDDM Diabetic Rats (NIDDM 당뇨병 흰쥐에서 n-3 다가불포화지방산이 가자미근의 Glucose Uptake에 미치는 영향)

  • 최원경;윤옥현;강병태
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.550-555
    • /
    • 1998
  • The purpose of this study was to investigate the effects of n-3 polyunsaturated fatty acids(PUFA) on glucose and lipids metabolism in high-fat diet rate. Rats were randomly assigned to normal, high-fat with n-3 PUFA and high-fat dietary groups. Experiments were carried out after 5 weeks feeding with prescriptive diets following 7 hrs fasting. Body weight gains tended to be higher in high-fat fed rats than normal. Blood glucose was increased (p<0.05) by high-fat diet compared with normal diet, and decreaseed (p<0.05) to normal level by n-3 PUFA. Plasma insulin level was significcantly higher (p<0.01) in high-fat diet rats than that of normal-diet rats, and also decreased (p<0.01) by n-3 PUFA. Glucose up take of soleus muscle in vitro was decreased markedly in high-fat fed rats than normal diet rats at 0, 1, 10, and 100nM insulin concentration. Therefore insulin sensitivity and responsiveness were decreased by high-fat diet. Omega-3 PUFA made a recover(p<0.01) insulin sensitivity to almost normal level, and improved (p<0.05) insulin responsiveness in some extent. In conclusion, the results suggest that metabolic disorder of glucose and insulin resistance of skeletal muscle are caused by high-fat diet and n-3 PUFA can ameliorate metabolic disorder and insulin resistance.

  • PDF