• Title/Summary/Keyword: insulation

Search Result 4,494, Processing Time 0.033 seconds

A Numerical Study for Calculation of Overall Heat Transfer Coefficient of Double Layers Covering and Insulation Material for Greenhouse (온실용 이중피복 및 보온재의 관류열전달계수 산정을 위한 수치적 연구)

  • Lee, Jong-Won;Kim, Dong-Keon;Lee, Hyun-Woo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.2
    • /
    • pp.41-47
    • /
    • 2015
  • This study calculated the overall heat transfer coefficient (U-value) of greenhouse covering materials with thermal screens using a simulation model and then estimated the validity of the calculated results by comparison with measured values. The U-value decreased gradually as the thickness of the air space between the double glazing increased, and then remained essentially constant at thicknesses exceeding 25 mm. The U-value also increased with the difference in temperature between the inside and outside of the hot box. The vigorous convective heat transfer between two plastic films caused unsteady heat flow and then created a nonlinear temperature distribution in the air space. The distance did not affect the U-value at distances of 50~200 mm between the plastic covering and thermal curtain. The numerical calculation results, with and without sky radiation, were in accord with the experimental results for a $30^{\circ}C$ temperature difference between the inside and outside of the hot box. In conclusion, a reliable U-value can be calculated for a temperature difference of $30^{\circ}C$ or more between the inside and outside of the hot box.

Field Survey on the Structure and Manure Treatment of Two-Storey and Sawdust Pig Houses in Korea (국내 2층 돈사와 톱밥돈사의 구조 및 분뇨처리 실태조사)

  • Jeong J. W.;Yoo Y. H.;Song J. I.;Kim T. I.;Jeon B. S.;Yang C. B.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The farm house structure, ventilation system and manure treatment of two-storey buildings and sawdust pig houses were surveyed and analyzed. Based on the data for ten selected farms in five provinces during eight months, the goal is to eventually establish a standard two-storey pig house. Manure treatments were composting, slurry and activated sludge in two-storey pig houses, while fermentation method was done in sawdust pig house. The depth of sawdust as a litter material were 10 to 60cm, with a duration of 1/2, 1, 3 and 6 months, respectively. The ventilation systems were the mechanical type in two-storey pig houses and natural system in the sawdust pig house. Side wall in the two-storey pig house was enclosed with insulation materials such as block, colored metal sheet and sandwich panels. The minimum ceiling height in the first floor of the two-storey pig house was 2.0m and the maximum was 3.0m. On the second floor, ceiling height ranged from 2.0 to 2.7m. The construction cost in the two-storey systems were $700\~140$, and sidewall curtain systems were $30\~40$ thousand Won/pyung.

  • PDF

The quality investigation of 6H-SiC crystals grown by conventional PVT method with various SiC powders

  • Yeo, Im-Gyu;Lee, Won-Jae;Shin, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.113-114
    • /
    • 2009
  • Silicon carbide is one of the most attractive and promising wide band-gap semiconductor material with excellent physical properties and huge potential for electronic applications. Up to now, the most successful method for growth of large SiC crystals with high quality is the physical vapor transport (PVT) method [1, 2]. Since further reduction of defect densities in larger crystal are needed for the true implementation of SiC devices, many researchers are focusing to improve the quality of SiC single crystal through the process modifications for SiC bulk growth or new material implementations [3, 4]. It is well known that for getting high quality SiC crystal, source materials with high purity must be used in PVT method. Among various source materials in PVT method, a SiC powder is considered to take an important role because it would influence on crystal quality of SiC crystal as well as optimum temperature of single crystal growth, the growth rate and doping characteristics. In reality, the effect of powder on SiC crystal could definitely exhibit the complicated correlation. Therefore, the present research was focused to investigate the quality difference of SiC crystal grown by conventional PVT method with using various SiC powders. As shown in Fig. 1, we used three SiC powders with different particles size. The 6H-SiC crystals were grown by conventional PVT process and the SiC seeds and the high purity SiC source materials are placed on opposite side in a sealed graphite crucible which is surrounded by graphite insulation[5, 6]. The bulk SiC crystal was grown at $2300^{\circ}C$ of the growth temperature and 50mbar of an argon pressure. The axial thermal gradient across the SiC crystal during the growth is estimated in the range of $15\sim20^{\circ}C/cm$. The chemical etch in molten KOH maintained at $450^{\circ}C$ for 10 min was used for defect observation with a polarizing microscope in Nomarski mode. Electrical properties of bulk SiC materials were measured by Hall effect using van der Pauw geometry and a UV/VIS spectrophotometer. Fig. 2 shows optical photographs of SiC crystal ingot grown by PVT method and Table 1 shows electrical properties of SiC crystals. The electrical properties as well as crystal quality of SiC crystals were systematically investigated.

  • PDF

Development of Recycling Technology for Used Cables (폐전선 재활용 기술개발)

  • 양정일;오정완;최우진;황선국
    • Resources Recycling
    • /
    • v.3 no.2
    • /
    • pp.28-34
    • /
    • 1994
  • A part of used cables, such as electric and communication cables has already been recycled by using simple processing methods. However, it has been found that the main problems in recycling of the used cables are insufficient treatment of fine stranded wires and low recovery of copper by air separation process. It has been shown that copper can be effectively separated from the PE using a solvent treatment method. In the present study, the used communication wires having diameter of 0.4 mm are treated in the mixing solution of toluene and water at $86^{\circ}C$ for about 10 minutes. In the solvent treatment, the copper wires recovered have 10~15mm length, which are much longer than that of 1~2mm length copper wires recovered by air table concentration method used in current recycling plants. The process consisting of cutting, air separation and electrostatic separation would be recommendable for the treatment of mixed cables. In this investigation, fine copper powders can also efficiently be recovered from insulation materials using electrostatic separator at the conditions of 20~50RPM roller speed and 15~30KV high DC power.

  • PDF

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

Heat Stress Assessment and the Establishment of a Forecast System to Provide Thermophysiological Indices for Harbor Workers in Summer (하계 항만열환경정보 제공을 위한 열환경 평가 및 예보시스템 구축)

  • Hwang, Mi-Kyoung;Yun, Jinah;Kim, Hyunsu;Kim, Young-Jun;Lim, Yeon-Ju;Lee, Young-Mi;Kim, Youngnam;Yoon, Euikyung;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.92-101
    • /
    • 2016
  • Objectives: Outdoor workers are exposed to thermally stressful work environments. In this study, heat stress indices for harbor workers in summer were calculated to evaluate thermal comfort based on a human heat balance model. These indices are Physiological Subjective Temperature (PST), Dehydration Risk (DhR), and Overheating Risk (OhR) according to respective stage of cargo work in a harbor. In addition, we constructed a forecast system to provide heat stress information. Methods: Thermophysiological indices in this study were calculated using the MENEX model (i.e. the human heat balance model), which used as inputs the meteorological parameters, clothing insulation, and metabolic rate for each stage of cargo work in the harbor of Masan over the course of seven days, including a four-day heat wave. The forecast heat stress information constructed for Masan harbor was based on meteorological data supported by the Dong-Nae Forecast from the KMA (Korea Metrological Administration) and other input parameters. Results: According to higher metabolic rate, thermophysiological indices showed a critical level. In particular, PST was evaluated as reaching the 'Very hot' or 'Hot' level during all seven days, despite the heat occurring over only four. It is important in a regard to consider the work environment conditions (i.e. labor intensity and clothing in harbor). On a webpage, the forecast thermophysiological indices show as infographics to be easily understand. This webpage is comprised of indices for both current conditions and the forecast, with brief guidance. Conclusion: Thermophysiological indices show the risk level to health during a heat wave period. Heat stress information could help to protect the health of harbor workers. Further, this study could extend the applicability of these indices to a variety of outdoor workers in consideration of work environments.

Effects of hydrogen addition during sputtering on the electrical properties of AIN insulating films for MIS device application (스퍼터링시 수소첨가가 MIS소자용 AIN절연박막의 전기적특성에 미치는 영향)

  • Kwon, Jung-Youl;Lee, Hwan-Chul;Lee, Heon-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 1999
  • AlN thin films were fabricated by reactive sputtering for the application of MIS devices with Al/AlN/Si structure. It has investigated the surface morphology change, I-V characteristics, C-V characteristics, and chemical composition of AlN films with the intriducing time of hydrogen on the fixed deposition condition(RF power: 150W, sputtering pressure: 5mTorr, flow rate ratio of $Ar/N_2=1$, hydrogen concentration: 5%). By addition of the hydrogen the deposition rate decreased drastically whereas the surface morphology changed little. It has been found from the analysis of I-V and C-V characteristics curves that the films deposited with hydrogen addition in initial stage had lower leakage current density, lower flat band voltage and hystersis profile when compared with those with hydrogen addition in last stage. The oxygen concentration in AlN films decreased with addition of hydrogen gas, which suggesting a profitable role in the insulation and C-V characteristics of AlN films.

  • PDF

The Influence of Insulation Wraps on the Temperature Change of Kiwifruit Trunk Surface During Winter (월동 피복재 종류에 따른 참다래 주간부 표면 온도변화)

  • Kwack, Yong-Bum;Kim, Hong Lim;Kim, Seong-Cheol;Kim, Mok-Jong;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2014
  • BACKGROUND: Kiwifruit is a warm-temperate, deciduous fruit tree. It is sensitive to frost or freeze damage during winter. Therefore, the farmers cover kiwifruit trunk with rice straw to preclude freeze injury. This study was conducted to evaluate trunk wraps for protection of freeze injury of kiwifruit (Actinidia deliciosa) vines. METHODS AND RESULTS: The experimental orchard was located in Sacheon (lat. $34^{\circ}56'N$, long. $128^{\circ}03'E$) of Gyeongsangnam-do, South Korea. The vines were 5-6-year-old 'Hayward'. Two wrap materials, rice straw and silver-cushioned mat (reflective foil-coated, plastic-foamed mat, Ganan Industry, Rep. of Korea) were evaluated for their heat-retaining ability. The trunks of kiwifruit vines were wrapped in late December, and the wraps were removed in mid-April the following year (2012/13 and 2013/14). Temperature inner wraps were recorded from January to March in 2013 and 2014 by WatchDog 2450 (Spectrum Technologies, Inc., USA). In 2013, the lowest ambient temperature of January and February was $-10.2^{\circ}C$, $-10.9^{\circ}C$, respectively. The lowest temperature of inner-wrap of silver -cushioned mat was $-6.3^{\circ}C$, $-2.6^{\circ}C$ in January and February, respectively. However, rice straw showed $-9.8^{\circ}C$ and $-9.9^{\circ}C$ in its lowest value of January and February. And also silver cushioned mat appeared to be superior to rice straw in its ability of heat-retaining during night time.

A Study on the Efficiency Estimation of Halogen free Fire Resistance Cable (저독성 내화전선 케이블의 성능평가에 관한 연구)

  • 윤헌주;홍진웅;유동일;윤재선;곽동일
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Efficiency estimation of toxicity free resistance cable experiments were conducts to understand toxicity free fire ersistance polyolefin insulation material and smoke density characteristic and combustion gas corrosion analysis. A main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Similar patterned fire incidents such as, Inchon Live-Hof Pub Restaurant as, Sea-land Children Resort have proven that serious loss of lives were caused by hazardous gas generated fire resistance cable materials. In this paper, Referenced documents were ASTM E662 standard test method for specific Ds genalated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5$\pm40.04〔w/$\textrm{cm}^2$〕for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 25.2 to 37.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. Also, the fire gases was occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC which has high content of carbon in chemical compound.