• Title/Summary/Keyword: instantaneous phase

Search Result 328, Processing Time 0.027 seconds

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Torque ripple reduction of a closed-loop driven permanent magnet stepping motor by lead angle control (Lead angle 제어에 의한 폐루프 운전 영구자석형 스테핑 전동기의 토오크 리플 저감)

  • Lee, Hyun-Chang;Jun, Ho-Ik;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.280-288
    • /
    • 1997
  • In this paper, we will show that the torque ripple in closed-loop drives of permanent magnet stepping motors is reduced as properly selected lead angle control method. We propose an instantaneous torque equation, which is the function of lead angle, to estimate the influence on torque ripple. We design a closed-loop lead angle control system based on the proposed instantaneous torque equation and measure the instantaneous torque in various excitation modes. It is shown that torque ripple is greatly reduced, as seen from the experimental results as well as from the computer simulation results. For example, torque ripple reduced from 78.25% to 46.82% in the case of 50 PPS single-phase excitation mode operation.

  • PDF

Non-stationary signal analysis by Continuous Wavelets Transform (웨이브렛 변환을 이용한 비정상 신호의 순간 주파수 결정)

  • Cho, Ig-hyun;Lee, In-Soo;Yoon, Dong-han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 2009
  • The analysis of Radar signal, telecommunication, bioengineering, seismic, and acoustic signal is consist of the Non-stationary signal which has non-linear phase variation. Non-stationary signal means that the physical properties of signal depend on time variation and the instantaneous frequency represents physical property of these type of signal. Thus estimation of the instantaneous frequency of non-stationary signal is important subject in signal processing. In this work, the instantaneous frequency analysis method utilizing continuous wavelets transform is represented and compared with Hilbert Transform method.

  • PDF

A new ultrasonic power generator using instantaneous current resultant control-based inverter and its control system

  • Kim, Dong-Hee;Kim, Young-Seok;Yoo, Dong-Wook;Kim, Yo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.631-636
    • /
    • 1987
  • The design of ultrasonic transducer energy processing systems requires highly reliable command featuring mechanical frequency tracking and constant velocity control of the ultrasonic transducer with an acoustic load. This paper presents a new conceptional instantaneous current resultant control base high-frequency inverter using self turn-off devices driving an electrostrictive ultrasonic transducer system and its optimum control technique, which is implemented by feed-back of the ultrasonic transducer applied voltage and instantaneous velocity of the transducer vibrating system through a Phase-Locked-Loop control scheme. The feedback voltage corresponding to instantaneous velocity is averaged over a half-period with respect to constant amplitude/constant velocity control strategy. Described are the theory of this signal detection technique and the experimental set-up.

  • PDF

An Advanced Three-Phase Active Power Filter with Adaptive Neural Network Based Harmonic Current Detection Scheme

  • Rukonuzzaman, M.;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • An advanced active power filter for the compensation of instantaneous harmonic current components in nonlinear current load is presented in this paper. A novel signal processing technique using an adaptive neural network algorithm is applied for the detection of harmonic components generated by three-phase nonlinear current loads and this method can efficiently determine the instantaneous harmonic components in real time. The control strategy of the switching signals to compensate current harmonics of the three-phase inverter is also discussed and its switching signals are generated with the space voltage vector modulation scheme. The validity of this active filtering processing system to compensate current harmonics is substantiated on the basis of simulation results.

Current Reference Calculation for Distribution Static Compensator using Phase Shift (위상변이를 이용한 배전용 정지형 보상기의 전류 지령 계산)

  • Hong, Sung-Min;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • This paper proposes a calculation of compensation current using phase shift to eliminate ripple components of instantaneous active power under unbalanced or non-linear loads condition. The proposed phase shift method instead of existing method(LPF; Low Pass Filter) to remove ripple components and this proposed method improves performances of transient and steady state response. To compare proposed method with existing method, experiments have been done for calculating an average active power at load side. Their results show that transient response and steady state response of proposed method is improved.

New Control Strategy for Three-Phase Grid-Connected LCL Inverters without a Phase-Locked Loop

  • Zhou, Lin;Yang, Ming;Liu, Qiang;Guo, Ke
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.487-496
    • /
    • 2013
  • The three-phase synchronous reference frame phase-locked loop (SRF-PLL) is widely used for synchronization applications in power systems. In this paper, a new control strategy for three-phase grid-connected LCL inverters without a PLL is presented. According to the new strategy, a current reference can be generated by using the instantaneous power control scheme and the proposed positive-sequence voltage detector. Through theoretical analysis, it is indicated that a high-quality grid current can be produced by introducing the new control strategy. In addition, a kind of independent control for reactive power can be achieved under unbalanced and distorted grid conditions. Finally, the excellent performance of the proposed control strategy is validated by means of simulation and experimental results.

Determination of Instantaneous Frequency By Continuous Wavelets Ridge (연속 웨이브렛 Ridge를 이용한 순간주파수 결정)

  • Kim, Tae-Hyung;Yoon, Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • The analysis of Rader signal that have non-linearity variable phase is signal that contact easily in several fields such as radar, telecommunication, seismic, sonar and biomedical applications. In generally, Non-stationary signal means that spectral characteristics are varying with time and instantaneous frequency is only one frequency or narrow range of frequencies varying as a function of time. Therefore, Instantaneous frequency is vary important variable that understanding physical characteristic of signal. This paper was describes continuous wavelet transform to determine instantaneous frequency at non-staionary signal and compare to existing method. When white noise or various frequency is overlapped each other in sign, existing method was can not decide corrected instantaneous frequency, but when used continuous wavelet transform, very well decide correctly frequency regardless of component of signal.

Application of the Instantaneous Lyapunov Exponent and Chaotic Systems, Part 1: Theory and Simulation (순간 발산지수의 카오스계에의 응용, 파트 1: 이론 및 시뮬레이션)

  • Shin, Ki-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.141-149
    • /
    • 1999
  • 어느 한 계가 양수의 발산지수(Lyapunov exponent)를 가질 때 이 계는 카오스계로 분류되며 그 동특성은 예측이 불가능해 진다. 감쇠 기계계(소산계)에서는 위상공간(phase space)의 초기 부피가 시간에 따라 수축한다. 발산 지수들의 합은 음수이며 그 기계계의 감쇠와 관련되며, 따라서 발산지수들의 합은 감쇠의 변화를 감시하는데 사용되어질 수 있다. 그러나 그 감쇠변화를 감시하기 위해서는 발산지수를 계산하는데 사용하는 신호(data) 부분(segment)이 짧아야 한다. 이는 문제점을 야기시키는데 그 이유는 발산지수가 아주 많은 양의 발산률(divergence rate)의 평균으로서 구해지기 때문이다. 이 문제를 극복하기 위해서, 본 저자는 '순간발산지수(Instantaneous Lyapunov Exponent)'를 도입하였으며, 이 순간발산지수들의 합이 어떻게 기계계의 감쇠와 관련되어지는 가에 대하여 기술하였다. 미분방적식과 시계열(time series)을 이용한 컴퓨터 시뮬레이션은 '순간발산지수들의 합'의 중요성을 입증하였다. 그러나 시계열(또는 실험신호)로 부터의 정확한 순간발산지수를 측정하기는 매우 힘들기 때문에 '부분발산지수(Short term averaged Lyapunov Exponent)'를 또한 도입하였다.

  • PDF

A Feasibility Study of Simultaneous Measurement of Gas-Liquid Two-Phase Flowrate and Quality with a Sharp-Edged Orifice (차압유량계를 이용한 기액 2상유량 및 건도의 동시측정 가능성에 관한 연구)

  • 이상천;오홍의;김중엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.335-342
    • /
    • 1986
  • The feasibility of simultaneous measurement of gas-liquid tow-phase flowrate and quality with a sharp-edged orifice has been investigated. Instantaneous pressure drop curves were monitored for various combinations of gas and liquid flowrates in the bubbly flow regime and some statistical properties of the curves were calculated. The time-averaged value of pressure drop increases with increasing gas and liquid flowrate, whereas the mean amplitude and the intensity of fluctuation monotonically increase as void fraction becomes larger in the flow regime. The statistical furctions for the instantaneous curves indicate a consistent pattern throughout the flow regime and the probability density function, which as a single-peaked and symmetrical distribution, is well predicted by the Gaussian distribution function. The results indicate that simultaneous determination of two-phase flowrate and quality may be possible based upon the statistical analysis of instaneous pressure drop curves measured in a sharp-edged orifice.